browser - Dave's Blog

Search
My timeline on Mastodon

Scrollbars in EdgeHtml WebView and Edge browser

2019 Aug 22, 5:35

The scrollbars in UWP WebView and in Edge have different default behavior leading to many emails to my team. (Everything I talk about here is for the EdgeHtml based WebView and Edge browser and does not apply to the Chromium based Edge browser and WebView2).

There is a Edge only -ms-overflow-style CSS property that controls scroll behavior. We have a different default for this in the WebView as compared to the Edge browser. If you want the appearance of the scrollbar in the WebView to match the browser then you must explicitly set that CSS property. The Edge browser default is scrollbar which gives us a Windows desktop styled non-auto-hiding scrollbar. The WebView default is -ms-autohiding-scrollbar which gives a sort of compromise between desktop and UWP app scrollbar behavior. In this configuration it is auto-hiding. When used with the mouse you'll get Windows desktop styled scrollbars and when used with touch you'll get the UWP styled scrollbars.

Since WebViews are intended to be used in apps this style is the default in order to better match the app's scrollbars. However this difference between the browser and WebView has led to confusion.

Here’s an -ms-overflow-style JSFiddle showing the difference between the two styles. Try it in the Edge browser and in WebView. An easy way to try it in the Edge WebView is using the JavaScript Browser.

PermalinkComments

Edge browser and JavaScript UWP app security model comparison

2018 Nov 29, 2:21

There are two main differences in terms of security between a JavaScript UWP app and the Edge browser:

Process Model

A JavaScript UWP app has one process (technically not true with background tasks and other edge cases but ignoring that for the moment) that runs in the corresponding appcontainer defined by the app's appx manifest. This one process is where edgehtml is loaded and is rendering HTML, talking to the network, and executing script. Specifically, the UWP main UI thread is the one where your script is running and calling into WinRT.

In the Edge browser there is a browser process running in the same appcontainer defined by its appx manifest, but there are also tab processes. These tab processes are running in restricted app containers that have fewer appx capabilities. The browser process has XAML loaded and coordinates between tabs and handles some (non-WinRT) brokering from the tab processes. The tab processes load edgehtml and that is where they render HTML, talk to the network and execute script.

There is no way to configure the JavaScript UWP app's process model but using WebViews you can approximate it. You can create out of process WebViews and to some extent configure their capabilities, although not to the same extent as the browser. The WebView processes in this case are similar to the browser's tab processes. See the MSWebViewProcess object for configuring out of process WebView creation. I also implemented out of proc WebView tabs in my JSBrowser fork.

ApplicationContentUriRules

The ApplicationContentUriRules (ACUR) section of the appx manifest lets an application define what URIs are considered app code. See a previous post for the list of ACUR effects.

Notably app code is able to access WinRT APIs. Because of this, DOM security restrictions are loosended to match what is possible with WinRT.

Privileged DOM APIs like geolocation, camera, mic etc require a user prompt in the browser before use. App code does not show the same browser prompt. There still may be an OS prompt – the same prompt that applies to any UWP app, but that’s usually per app not per origin.

App code also gets to use XMLHttpRequest or fetch to access cross origin content. Because UWP apps have separate state, cross origin here might not mean much to an attacker unless your app also has the user login to Facebook or some other interesting cross origin target.

PermalinkCommentsedge javascript security uwp web-security wwa

GoBack/GoForward in Win10 UWP WebView

2018 Oct 23, 9:18

The GoBack and GoForward methods on the UWP WebView (x-ms-webview in HTML, Windows.UI.Xaml.Controls.WebView in XAML, and Windows.Web.UI.Interop.WebViewControl in Win32) act the same as the Back and Forward buttons in the Edge browser. They don't necessarily change the top level document of the WebView. If inside the webview an iframe navigates then that navigation will be recorded in the forward/back history and the GoBack / GoForward call may result in navigating that iframe. This makes sense as an end user using the Edge browser since if I click a link to navigate one place and then hit Back I expect to sort of undo that most recent navigation regardless of if that navigation happened in an iframe or the top level document.

If that doesn't make sense for your application and you want to navigate forward or back ignoring iframe navigates, unfortunately there's no perfect workaround.

One workaround could be to try calling GoBack and then checking if a FrameNavigationStarting event fires or a NavigationStarting event fires. If a frame navigates then try calling GoBack again. There could be async races in this case since other navigates could come in and send you the wrong signal and interrupt your multi step GoBack operation.

You could also try keeping track of all top level document navigations and manually navigate back to the URIs you care about. However, GoBack and GoForward also restore some amount of user state (form fills etc) in addition to navigating. Manually calling navigate will not give this same behavior.

PermalinkCommentsuri uwp webview

Tiny browser features: JSBrowser crash resistance

2018 May 13, 4:59

JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to implement tiny browser features in JavaScript and in this post I'm implementing crash resistance.

The normal DOM mechanisms for creating an HTML WebView create an in-process WebView, in which the WebView runs on a unique UI thread. But we can use the MSWebView constructor instead to create an out-of-process WebView in which the WebView runs in its own distinct WebView process. Unlike an in-process WebView, Web content running in an out-of-process WebView can only crash the WebView process and not the app process.

        this.replaceWebView = () => {
let webview = document.querySelector("#WebView");
// Cannot access webview.src - anything that would need to communicate with the webview process may fail
let oldSrc = browser.currentUrl;
const webviewParent = webview.parentElement;
webviewParent.removeChild(webview);
webview = new MSWebView();
Object.assign(this, {
"webview": webview
});
webview.setAttribute("id", "WebView");

// During startup our currentUrl field is blank. If the WebView has crashed
// and we were on a URI then we may obtain it from this property.
if (browser.currentUrl && browser.currentUrl != "") {
this.trigger("newWebview");
this.navigateTo(browser.currentUrl);
}
webviewParent.appendChild(webview);

I run replaceWebView during startup to replace the in-process WebView created via HTML markup with an out-of-process WebView. I could be doing more to dynamically copy styles, attributes, etc but I know what I need to set on the WebView and just do that.

When a WebView process crashes the corresponding WebView object is no longer useful and a new WebView element must be created. In fact if the old WebView object is used it may throw and will no longer have valid state. Accordingly when the WebView crashes I run replaceWebView again. Additionally, I need to store the last URI we've navigated to (browser.currentUrl in the above) since the crashed WebView object won't know what URI it is on after it crashes.

            webview.addEventListener("MSWebViewProcessExited", () => { 
if (browser.currentUrl === browser.lastCrashUrl) { ++browser.lastCrashUrlCrashCount;
}
else {
browser.lastCrashUrl = browser.currentUrl;
browser.lastCrashUrlCrashCount = 1;
}
// If we crash again and again on the same URI, maybe stop trying to load that URI.
if (browser.lastCrashUrlCrashCount >= 3) {
browser.lastCrashUrl = "";
browser.lastCrashUrlCrashCount = 0;
browser.currentUrl = browser.startPage;
}
this.replaceWebView();
});

I also keep track of the last URI that we recovered and how many times we've recovered that same URI. If the same URI crashes more than 3 times in a row then I assume that it will keep happening and I navigate to the start URI instead.

PermalinkCommentsbrowser javascript jsbrowser uwp webview win10

Tiny browser features: JSBrowser zoom

2018 May 10, 3:49

JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to implement tiny browser features in JavaScript and in this post I'm implementing zoom.

My plan to implement zoom is to add a zoom slider to the settings div that controls the scale of the WebView element via CSS transform. My resulting zoom change is in git and you can try the whole thing out in my JSBrowser fork.

Slider

I can implement the zoom settings slider as a range type input HTML element. This conveniently provides me a min, max, and step property and suits exactly my purposes. I chose some values that I thought would be reasonable so the browser can scale between half to 3x by increments of one quarter. This is a tiny browser feature after all so there's no custom zoom entry.

<a><label for="webviewZoom">Zoom</label><input type="range" min="50" max="300" step="25" value="100" id="webviewZoom" /></a>

To let the user know this slider is for controlling zoom, I make a label HTML element that says Zoom. The label HTML element has a for attribute which takes the id of another HTML element. This lets the browser know what the label is labelling and lets the browser do things like when the label is clicked to put focus on the slider.

Scale

There are no explicit scale APIs for WebView so to change the size of the content in the WebView we use CSS.

        this.applyWebviewZoom = state => {
const minValue = this.webviewZoom.getAttribute("min");
const maxValue = this.webviewZoom.getAttribute("max");
const scaleValue = Math.max(Math.min(parseInt(this.webviewZoom.value, 10), maxValue), minValue) / 100;

// Use setAttribute so they all change together to avoid weird visual glitches
this.webview.setAttribute("style", [
["width", (100 / scaleValue) + "%"],
["height", "calc(" + (-40 / scaleValue) + "px + " + (100 / scaleValue) + "%)"],
["transform", "scale(" + scaleValue + ")"]
].map(pair => pair[0] + ": " + pair[1]).join("; "));
};

Because the user changes the scale at runtime I accordingly replace the static CSS for the WebView element with the script above to programmatically modify the style of the WebView. I change the style with one setAttribute call to do my best to avoid the browser performing unnecessary work or displaying the WebView in an intermediate and incomplete state. Applying the scale to the element is as simple as adding 'transform: scale(X)' but then there are two interesting problems.

The first is that the size of the WebView is also scaled not just the content within it. To keep the WebView the same effective size so that it still fits properly into our browser UI, we must compensate for the scale in the WebView width and height. Accordingly, you can see that we scale up by scaleValue and then in width and height we divide by the scaleValue.

transform-origin: 0% 0%;

The other issue is that by default the scale transform's origin is the center of the WebView element. This means when scaled up all sides of the WebView would expand out. But when modifying the width and height those apply relative to the upper left of the element so our inverse scale application to the width and height above aren't quite enough. We also have to change the origin of the scale transform to match the origin of the changes to the width and height.

PermalinkCommentsbrowser css-transform javascript JS jsbrowser uwp webview win10

Tweet from David Rousset

2016 Dec 6, 8:45
Creating an extension for all browsers: , , , & : https://www.davrous.com/2016/12/07/creating-an-extension-for-all-browsers-edge-chrome-firefox-opera-brave/ 
PermalinkComments

Tweet from Jason Scott

2016 Nov 1, 2:06
Running Windows 3.1 in browser emulation on an XBOX One because that's a thing that happens
PermalinkComments

Tweet from gregwhitworth

2016 Jun 7, 1:43
Dear @google, please store my answer to this question so I don't see this every time I start a browser session.
PermalinkComments

Tweet from David Risney

2016 Jun 5, 4:10
I played Chrome, Edge, FF & IE against each other in WebDriverChess. Edge just beats out Firefox for #1. Results: https://github.com/david-risney/webDriverChess/#browser-face-off 
PermalinkComments

Tweet from David Risney

2016 Jun 5, 3:55
I finished WebDriverChess https://github.com/david-risney/webDriverChess/ : Two webdriver supporting browsers play a friendly game of chess. pic.twitter.com/axs92w3uF6
PermalinkComments

Windows Store App WebView Cross Origin XMLHttpRequest Behavior

2016 Jun 2, 6:45

TL;DR: Web content in a JavaScript Windows Store app or WebView in a Windows Store app that has full access to WinRT also gets to use XHR unrestricted by cross origin checks.

By default web content in a WebView control in a Windows Store App has the same sort of limitations as that web content in a web browser. However, if you give the URI of that web content full access to WinRT, then the web content also gains the ability to use XMLHttpRequest unrestricted by cross origin checks. This means no CORS checks and no OPTIONS requests. This only works if the web content's URI matches a Rule in the ApplicationContentUriRules of your app's manifest and that Rule declares WindowsRuntimeAccess="all". If it declares WinRT access as 'None' or 'AllowForWebOnly' then XHR acts as it normally does.

In terms of security, if you've already given a page access to all of WinRT which includes the HttpRequest class and other networking classes that don't perform cross origin checks, then allowing XHR to skip CORS doesn't make things worse.

PermalinkCommentsjavascript uwa uwp web webview windows winrt xhr

Tweet from David Risney

2016 Jun 1, 1:51
Cool JS image diff'ing including browser webcam based demos https://twitter.com/lonekorean/status/737630487913455616 
PermalinkComments

JavaScript Types and WinRT Types

2016 Jan 21, 5:35PermalinkCommentschakra development javascript winrt

Retweet of JustRogDigiTec

2015 Nov 29, 2:58
@JustRogDigiTec A fiddle as well http://jsfiddle.net/xb3gheqb/  in case it clarifies. Note: An older browser may not demo properly
PermalinkComments

Tweet from David_Risney

2015 Apr 12, 10:39
Does 'charset=utf8' work anywhere? Or do other browsers fallback to UTF-8 just giving the appearance? @ericlaw http://wp.me/p60i9o-r 
PermalinkComments

Retweet of stevefaulkner

2015 Mar 3, 2:49
browser support? "no clue" "I do not understand the point of this type. Neither do browsers." http://quirksmode.org/html5/inputs/mobile.html …
PermalinkComments

Retweet of mrlacey

2015 Mar 1, 6:42
Chrome is not one browser pic.twitter.com/nZaZgRidjC
PermalinkComments

Retweet of ivanristic

2015 Feb 26, 2:45
Blink browser engine: "Intent to deprecate: Insecure usage of powerful features" https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/2LXKVWYkOus/gT-ZamfwAKsJ … < Pushing toward more HTTPS
PermalinkComments

A high-profile fork: one year of Blink and Webkit Some stats...

2014 Jun 3, 9:10


A high-profile fork: one year of Blink and Webkit

Some stats and analysis at a very high level of the Blink fork from Webkit.

PermalinkCommentstechnology browser webkit blink apple google

location.hash and location.search are bad and they should feel bad

2014 May 22, 9:25
The DOM location interface exposes the HTML document's URI parsed into its properties. However, it is ancient and has problems that bug me but otherwise rarely show up in the real world. Complaining about mostly theoretical issues is why blogging exists, so here goes:
  • The location object's search, hash, and protocol properties are all misnomers that lead to confusion about the correct terms:
    • The 'search' property returns the URI's query property. The query property isn't limited to containing search terms.
    • The 'hash' property returns the URI's fragment property. This one is just named after its delimiter. It should be called the fragment.
    • The 'protocol' property returns the URI's scheme property. A URI's scheme isn't necessarily a protocol. The http URI scheme of course uses the HTTP protocol, but the https URI scheme is the HTTP protocol over SSL/TLS - there is no HTTPS protocol. Similarly for something like mailto - there is no mailto wire protocol.
  • The 'hash' and 'search' location properties both return null in the case that their corresponding URI property doesn't exist or if its the empty string. A URI with no query property and a URI with an empty string query property that are otherwise the same, are not equal URIs and are allowed by HTTP to return different content. Similarly for the fragment. Unless the specific URI scheme defines otherwise, an empty query or hash isn't the same as no query or hash.
But like complaining about the number of minutes in an hour none of this can ever change without huge compat issues on the web. Accordingly I can only give my thanks to Anne van Kesteren and the awesome work on the URL standard moving towards a more sane (but still working practically within the constraints of compat) location object and URI parsing in the browser.
PermalinkComments
Older Entries Creative Commons License Some rights reserved.