form - Dave's Blog


Search

JavaScript Promises: There and back again - HTML5 Rocks

2013 Dec 17, 9:02

The ES6 form of Promises.

PermalinkCommentstechnical javascript

Moving PowerShell data into Excel

2013 Aug 15, 10:04
PowerShell nicely includes ConvertTo-CSV and ConvertFrom-CSV which allow you to serialize and deserialize your PowerShell objects to and from CSV. Unfortunately the CSV produced by ConvertTo-CSV is not easily opened by Excel which expects by default different sets of delimiters and such. Looking online you'll find folks who recommend using automation via COM to create a new Excel instance and copy over the data in that fashion. This turns out to be very slow and impractical if you have large sets of data. However you can use automation to open CSV files with not the default set of delimiters. So the following isn't the best but it gets Excel to open a CSV file produced via ConvertTo-CSV and is faster than the other options:
Param([Parameter(Mandatory=$true)][string]$Path);

$excel = New-Object -ComObject Excel.Application

$xlWindows=2
$xlDelimited=1 # 1 = delimited, 2 = fixed width
$xlTextQualifierDoubleQuote=1 # 1= doublt quote, -4142 = no delim, 2 = single quote
$consequitiveDelim = $False;
$tabDelim = $False;
$semicolonDelim = $False;
$commaDelim = $True;
$StartRow=1
$Semicolon=$True

$excel.visible=$true
$excel.workbooks.OpenText($Path,$xlWindows,$StartRow,$xlDelimited,$xlTextQualifierDoubleQuote,$consequitiveDelim,$tabDelim,$semicolonDelim, $commaDelim);
See Workbooks.OpenText documentation for more information.
PermalinkCommentscsv excel powershell programming technical

Pixel Perfect Timing Attacks with HTML5 - Context » Information Security

2013 Aug 7, 8:25PermalinkCommentssecurity html html5 svg javascript requestAnimationFrame iframe

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
Build
Normalize
Equality
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing. Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI.
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs. This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
����������� Uri originalUri = new Uri("http://example.com/path1/?query");
����������� UriBuilder uriBuilder = new UriBuilder(originalUri);
����������� uriBuilder.Path = "/path2/";
����������� Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding. It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building. It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters. For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
������� var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
������� console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI. This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.
URI equality determines if two URIs are equal or not necessarily equal.
����������� var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
��������������� uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
����������� console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C. C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
������� var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
��� ��������relativeUri = "/path?query#fragment",
��� ��������absoluteUri = baseUri.combineUri(relativeUri);
������� console.log(baseUri.absoluteUri);������ // http://example.com/index.html
������� console.log(absoluteUri.absoluteUri);�� // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri). This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data. In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”. To construct a URI one must first construct the basic components of the URI which involves encoding the data. For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves. Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
������� var uri = new Windows.Foundation.Uri("http://example.com" +
����������� "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
����������� "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
������� console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters. However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims. For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI. WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode. Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri). This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property. For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values. It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves. Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
����������� var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
����������� uri.query.substr(1).split("&").forEach(
��������������� function (keyValueString) {
������������������� var keyValue = keyValueString.split("=");
������������������� console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
������������������� // foo: bar
������������������� // array: ['','&','=','#']
��������������� });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode. For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property. It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder. The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
��� var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
��� uri.queryParsed.forEach(
������� function (pair) {
����������� console.log("name: " + pair.name + ", value: " + pair.value);
����������� // name: foo, value: bar
����������� // name: array, value: ['','&','=','#']
������� });
��� console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET. However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
����������� Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
����������� WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
���� �������foreach (IWwwFormUrlDecoderEntry entry in decoder)
����������� {
��������������� System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
��������������� // name: foo, value: bar
��������������� // name: array, value: ['','&','=','#']
����������� }

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly. Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
������� ����var uri = new Windows.Foundation.Uri("http://example.com/"),
��������������� query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
����������� console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

Would an American Jury Even Convict Edward Snowden?

2013 Jul 16, 4:17
PermalinkCommentsnsa edward-snowden law legal

WinRT PropertySet Changed Event Danger

2013 Jul 8, 1:46

The Windows Runtime API Windows.Foundation.Collections.PropertySet class​ is a nice string name to object value map that has a changed event that fires when the contents of the map is modified. Be careful with this event because it fires synchronously from the thread on which the PropertySet was modified. If modified from the UI thread, the UI thread will then wait as it synchronously dispatches the changed event to all listeners which could lead to performance issues or especially from the UI thread deadlock. For instance, deadlock if you have two threads both trying to tell each other about changed events for different PropertySets.

PermalinkCommentsdeadlock development propertyset windows windows-runtime winrt

Words with Hints Windows 8 App Development Notes

2013 Jul 4, 1:00

My second completed app for the Windows Store was Words with Hints a companion to Words with Friends or other Scrabble like games that gives you *ahem* hints. You provide your tiles and optionally letters placed in a line on the board and Words with Hints gives you word options.

I wrote this the first time by building a regular expression to check against my dictionary of words which made for a slow app on the Surface. In subsequent release of the app I now spawn four web workers (one for each of the Surface's cores) each with its own fourth of my dictionary. Each fourth of the dictionary is a trie which makes it easy for me to discard whole chunks of possible combinations of Scrabble letters as I walk the tree of possibilities.

The dictionaries are large and takes a noticeable amount of time to load on the Surface. The best performing mechanism I found to load them is as JavaScript source files that simply define their portion of the dictionary on the global object and synchronously (only on the worker so not blocking the UI thread). Putting them into .js files means they take advantage of bytecode caching making them load faster. However because the data is mostly strings and not code there is a dramatic size increase when the app is installed. The total size of the four dictionary .js files is about 44Mb. The bytecode cache for the dictionary files is about double that 88Mb meaning the dictionary plus the bytecode cache is 132Mb.

To handle the bother of postMessage communication and web workers this was the first app in which I used my promise MessagePort project which I'll discuss more in the future.

This is the first app in which I used the Microsoft Ad SDK. It was difficult to find the install for the SDK and difficult to use their website, but once setup, the Ad SDK was easy to import into VS and easy to use in my app.

PermalinkCommentsdevelopment technical windows windows-store words-with-hints

Shout Text Windows 8 App Development Notes

2013 Jun 27, 1:00

My first app for Windows 8 was Shout Text. You type into Shout Text, and your text is scaled up as large as possible while still fitting on the screen, as you type. It is the closest thing to a Hello World app as you'll find on the Windows Store that doesn't contain that phrase (by default) and I approached it as the simplest app I could make to learn about Windows modern app development and Windows Store app submission.

I rely on WinJS's default layout to use CSS transforms to scale up the user's text as they type. And they are typing into a simple content editable div.

The app was too simple for me to even consider using ads or charging for it which I learned more about in future apps.

The first interesting issue I ran into was that copying from and then pasting into the content editable div resulted in duplicates of the containing div with copied CSS appearing recursively inside of the content editable div. To fix this I had to catch the paste operation and remove the HTML data from the clipboard to ensure only the plain text data is pasted:

        function onPaste() {
var text;

if (window.clipboardData) {
text = window.clipboardData.getData("Text").toString();
window.clipboardData.clearData("Html");
window.clipboardData.setData("Text", util.normalizeContentEditableText(text));
}
}
shoutText.addEventListener("beforepaste", function () { return false; }, false);
shoutText.addEventListener("paste", onPaste, false);

I additionally found an issue in IE in which applying a CSS transform to a content editable div that has focus doesn't move the screen position of the user input caret - the text is scaled up or down but the caret remains the same size and in the same place on the screen. To fix this I made the following hack to reapply the current cursor position and text selection which resets the screen position of the user input caret.

        function resetCaret() {
setTimeout(function () {
var cursorPos = document.selection.createRange().duplicate();
cursorPos.select();
}, 200);
}

shoutText.attachEvent("onresize", function () { resetCaret(); }, true);
PermalinkCommentsdevelopment html javascript shout-text technical windows windows-store

In Depth Review: New NSA Documents Expose How Americans Can Be Spied on Without A Warrant

2013 Jun 21, 10:43

What It All Means: All Your Communications are Belong to U.S. In sum, if you use encryption they’ll keep your data forever. If you use Tor, they’ll keep your data for at least five years. If an American talks with someone outside the US, they’ll keep your data for five years. If you’re talking to your attorney, you don’t have any sense of privacy. And the NSA can hand over you information to the FBI for evidence of any crime, not just terrorism. All without a warrant or even a specific FISA order.

Not sure if this is saying all Tor data is collected or saying if someone uses Tor then start collecting that someone’s communication.

PermalinkCommentstechnical legal tor nsa eff spying security privacy

WinDbg .cmdtree file format reverse engineered | Debugging

2013 May 22, 3:34

Wrote some scripts that produce .cmdtree files. Nice to find this format definition.

PermalinkCommentsdebug windows windbg technical cmdtree

This might be the strangest release of classic Chicago label...

2013 May 17, 5:43


This might be the strangest release of classic Chicago label Trax yet! The clue’s in the title - it’s Daft Punk brassified. We get four classics by the world’s most famous Gallic robot duo: “Harder, Better, Faster, Stronger” gets turned into a 1940s Dick Tracy-style riff-off with every form of trumpet imaginable, “Around The World” mixes wind instruments with that famous vocal mantra, “Da Funk” features plenty of sassy brass and “One More Time” wraps things up on a swingin’, jazzy high.

PermalinkCommentsSoundCloud Iamjasonalexander Brass Music music cover daft-punk

The Making of Pulp Fiction: Quentin Tarantino’s and the Cast’s Retelling | Vanity Fair

2013 Feb 28, 3:03

The first independent film to gross more than $200 million, Pulp Fiction was a shot of adrenaline to Hollywood’s heart, reviving John Travolta’s career, making stars of Samuel L. Jackson and Uma Thurman, and turning Bob and Harvey Weinstein into giants. How did Quentin Tarantino, a high-school dropout and former video-store clerk, change the face of modern cinema? Mark Seal takes the director, his producers, and his cast back in time, to 1993.

PermalinkCommentsarticle movie film interview pulp-fiction

A Slower Speed of Light Official Trailer — MIT Game Lab (by...

2012 Nov 13, 7:41


A Slower Speed of Light Official Trailer — MIT Game Lab (by Steven Schirra)

“A Slower Speed of Light is a first-person game in which players navigate a 3D space while picking up orbs that reduce the speed of light in increments. A custom-built, open-source relativistic graphics engine allows the speed of light in the game to approach the player’s own maximum walking speed. Visual effects of special relativity gradually become apparent to the player, increasing the challenge of gameplay. These effects, rendered in realtime to vertex accuracy, include the Doppler effect; the searchlight effect; time dilation; Lorentz transformation; and the runtime effect.

A production of the MIT Game Lab.

Play now for Mac and PC! http://gamelab.mit.edu/games/a-slower-speed-of-light/

PermalinkCommentsscience game video-game mit 3d light-speed

DSL modem hack used to infect millions with banking fraud malware | Ars Technica

2012 Oct 1, 6:33

According to the links within this article, although the root URI of the router requires authentication, the /password.cgi URI doesn’t and the resulting returned HTML contains (but does not display) the plaintext of the password, as well as an HTML FORM to modify the password that is exploitable by CSRF.

The attack… infected more than 4.5 million DSL modems… The CSRF (cross-site request forgery) vulnerability allowed attackers to use a simple script to steal passwords required to remotely log in to and control the devices. The attackers then configured the modems to use malicious domain name system servers that caused users trying to visit popular websites to instead connect to booby-trapped imposter sites.

PermalinkCommentstechnical security html router web dns csrf

Stripe CTF - Level 7

2012 Sep 13, 5:00

Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.

Code

@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)

...

def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])

h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True

Issue

The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.

However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.

count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.

Notes

Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.

PermalinkCommentshash internet length-extension security sha1 stripe-ctf technical web

Stripe CTF - XSS, CSRF (Levels 4 & 6)

2012 Sep 10, 4:43

Level 4 and level 6 of the Stripe CTF had solutions around XSS.

Level 4

Code

> Registered Users 

  • <% @registered_users.each do |user| %>
    <% last_active = user[:last_active].strftime('%H:%M:%S UTC') %>
    <% if @trusts_me.include?(user[:username]) %>

  • <%= user[:username] %>
    (password: <%= user[:password] %>, last active <%= last_active %>)
  • Issue

    The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:

    
    
    This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's password.

    Notes

    Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.

    Level 6

    Code



    ...

    def self.safe_insert(table, key_values)
    key_values.each do |key, value|
    # Just in case people try to exfiltrate
    # level07-password-holder's password
    if value.kind_of?(String) &&
    (value.include?('"') || value.include?("'"))
    raise "Value has unsafe characters"
    end
    end

    conn[table].insert(key_values)
    end

    Issue

    This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:

    
    
PermalinkCommentscsrf encoding html internet javascript percent-encoding script security stripe-ctf technical web xss

Stripe CTF - SQL injections (Levels 0 & 3)

2012 Sep 5, 9:10

Stripe's web security CTF's level 0 and level 3 had SQL injection solutions described below.

Level 0

Code

app.get('/*', function(req, res) {
var namespace = req.param('namespace');

if (namespace) {
var query = 'SELECT * FROM secrets WHERE key LIKE ? || ".%"';
db.all(query, namespace, function(err, secrets) {

Issue

There's no input validation on the namespace parameter and it is injected into the SQL query with no encoding applied. This means you can use the '%' character as the namespace which is the wildcard character matching all secrets.

Notes

Code review red flag was using strings to query the database. Additional levels made this harder to exploit by using an API with objects to construct a query rather than strings and by running a query that only returned a single row, only ran a single command, and didn't just dump out the results of the query to the caller.

Level 3

Code

@app.route('/login', methods=['POST'])
def login():
username = flask.request.form.get('username')
password = flask.request.form.get('password')

if not username:
return "Must provide username\n"

if not password:
return "Must provide password\n"

conn = sqlite3.connect(os.path.join(data_dir, 'users.db'))
cursor = conn.cursor()

query = """SELECT id, password_hash, salt FROM users
WHERE username = '{0}' LIMIT 1""".format(username)
cursor.execute(query)

res = cursor.fetchone()
if not res:
return "There's no such user {0}!\n".format(username)
user_id, password_hash, salt = res

calculated_hash = hashlib.sha256(password + salt)
if calculated_hash.hexdigest() != password_hash:
return "That's not the password for {0}!\n".format(username)

Issue

There's little input validation on username before it is used to constrcut a SQL query. There's no encoding applied when constructing the SQL query string which is used to, given a username, produce the hashed password and the associated salt. Accordingly one can make username a part of a SQL query command which ensures the original select returns nothing and provide a new SELECT via a UNION that returns some literal values for the hash and salt. For instance the following in blue is the query template and the red is the username injected SQL code:

SELECT id, password_hash, salt FROM users WHERE username = 'doesntexist' UNION SELECT id, ('5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8') AS password_hash, ('word') AS salt FROM users WHERE username = 'bob' LIMIT 1
In the above I've supplied my own salt and hash such that my salt (word) plus my password (pass) hashed produce the hash I provided above. Accordingly, by providing the above long and interesting looking username and password as 'pass' I can login as any user.

Notes

Code review red flag is again using strings to query the database. Although this level was made more difficult by using an API that returns only a single row and by using the execute method which only runs one command. I was forced to (as a SQL noob) learn the syntax of SELECT in order to figure out UNION and how to return my own literal values.

PermalinkCommentssecurity sql sql-injection technical web-security

Brainfuck beware: JavaScript is after you! | Patricio Palladino

2012 Aug 10, 10:18

“tl;dr I just made a tool to transform any javascript code into an equivalent sequence of ()[]{}!+ characters. You can try it here, or grab it from github or npm. Keep on reading if you want to know how it works.”

JavaScript has some crazy implicit casts.

PermalinkCommentstechnical humor programming javascript obfuscation

Everybody hates Firefox updates - Evil Brain Jono's Natural Log

2012 Jul 16, 1:59

Former FireFox developer on the switch to their continuous update cycle. 

Oh no, Chrome is doing such-and-such; we’d better do something equivalent or we’ll fall behind! We thought we needed a rapid update process like Chrome. We were jealous of their rapid update capability, which let them deploy improvements to users continuously. We had to “catch up” with Chrome’s updating capability.

Dealing with servicing on IE for years had led me to some of the same thoughts when I heard FireFox was switching to continuous updates.

PermalinkCommentsfirefox via:ericlaw web-browser technical web browser servicing update software

Indicating Details of Problems to Machines in HTTP

2012 Jul 3, 2:28

This specification defines a “Problem Detail” as an extensible way to carry machine-readable details of errors in a response, to avoid the need to invent new response formats.

PermalinkCommentstechnical http ietf standard
Older Entries Creative Commons License Some rights reserved.