uri - Dave's Blog


Search

The 5 Things To Do About the New Heartbleed Bug

8 days ago

Its time to get a password manager.

PermalinkCommentssecurity password technical

Hijacking user sessions with the Heartbleed vulnerability · Matt's Life Bytes

9 days ago

Just a quick tutorial on exploiting heartbleed for session hijacking. Is it worse to use https than http today?

PermalinkCommentstechnical security ssl heartbleed session-hijack

Xbox One Sign Out Trolling - YouTube

Jan 8, 5:53PermalinkCommentsvideo game xbox voice security

laughingsquid: F.A.A. Lifts Restrictions on Electronics During...

2013 Oct 31, 4:57


laughingsquid:

F.A.A. Lifts Restrictions on Electronics During All Phases of Flight

PermalinkCommentsflight plane electronics faa

theatlantic: Victorian Trolling: How Con Artists Spammed in a...

2013 Oct 29, 7:42


theatlantic:

Victorian Trolling: How Con Artists Spammed in a Time Before Email

The main difference between 21st-century scams and those of centuries past is one of delivery method.

Read more. [Image: Wikimedia Commons/Benjamin Breen]

PermalinkCommentshistory spam technical humor internet

FitBit and WebOC Application Compatibility Errors

2013 Aug 29, 7:17
I just got a FitBit One from my wife. Unfortunately I had issues running their app on my Windows 8.1 Preview machine. But I recognized the errors as IE compatibility issues, for instance an IE dialog popup from the FitBit app telling me about an error in the app's JavaScript. Given my previous post on WebOC versioning you may guess what I tried next. I went into the registry and tried out different browser mode and document mode versions until I got the FitBit software running without error. Ultimately I found the following registry value to work well ('FitBit connect.exe' set to DWORD decimal 8888).
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BROWSER_EMULATION]
"Fitbit Connect.exe"=dword:000022b8

For those familiar with the Windows registry the above should be enough. For those not familiar, copy and paste the above into notepad, save as a file named "fitbit.reg", and then double click the reg file and say 'Yes' to the prompt. Hopefully in the final release of Windows 8.1 this won't be an issue.
PermalinkComments

Pixel Perfect Timing Attacks with HTML5 - Context » Information Security

2013 Aug 7, 8:25PermalinkCommentssecurity html html5 svg javascript requestAnimationFrame iframe

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
Build
Normalize
Equality
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing. Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI.
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs. This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
����������� Uri originalUri = new Uri("http://example.com/path1/?query");
����������� UriBuilder uriBuilder = new UriBuilder(originalUri);
����������� uriBuilder.Path = "/path2/";
����������� Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding. It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building. It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters. For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
������� var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
������� console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI. This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.
URI equality determines if two URIs are equal or not necessarily equal.
����������� var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
��������������� uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
����������� console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C. C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
������� var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
��� ��������relativeUri = "/path?query#fragment",
��� ��������absoluteUri = baseUri.combineUri(relativeUri);
������� console.log(baseUri.absoluteUri);������ // http://example.com/index.html
������� console.log(absoluteUri.absoluteUri);�� // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri). This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data. In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”. To construct a URI one must first construct the basic components of the URI which involves encoding the data. For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves. Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
������� var uri = new Windows.Foundation.Uri("http://example.com" +
����������� "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
����������� "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
������� console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters. However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims. For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI. WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode. Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri). This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property. For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values. It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves. Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
����������� var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
����������� uri.query.substr(1).split("&").forEach(
��������������� function (keyValueString) {
������������������� var keyValue = keyValueString.split("=");
������������������� console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
������������������� // foo: bar
������������������� // array: ['','&','=','#']
��������������� });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode. For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property. It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder. The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
��� var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
��� uri.queryParsed.forEach(
������� function (pair) {
����������� console.log("name: " + pair.name + ", value: " + pair.value);
����������� // name: foo, value: bar
����������� // name: array, value: ['','&','=','#']
������� });
��� console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET. However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
����������� Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
����������� WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
���� �������foreach (IWwwFormUrlDecoderEntry entry in decoder)
����������� {
��������������� System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
��������������� // name: foo, value: bar
��������������� // name: array, value: ['','&','=','#']
����������� }

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly. Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
������� ����var uri = new Windows.Foundation.Uri("http://example.com/"),
��������������� query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
����������� console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

In Depth Review: New NSA Documents Expose How Americans Can Be Spied on Without A Warrant

2013 Jun 21, 10:43

What It All Means: All Your Communications are Belong to U.S. In sum, if you use encryption they’ll keep your data forever. If you use Tor, they’ll keep your data for at least five years. If an American talks with someone outside the US, they’ll keep your data for five years. If you’re talking to your attorney, you don’t have any sense of privacy. And the NSA can hand over you information to the FBI for evidence of any crime, not just terrorism. All without a warrant or even a specific FISA order.

Not sure if this is saying all Tor data is collected or saying if someone uses Tor then start collecting that someone’s communication.

PermalinkCommentstechnical legal tor nsa eff spying security privacy

Microsoft will pay up to $100K for new Windows exploit techniques

2013 Jun 21, 4:29


Good news everyone! Of course Microsoft employees are not eligible but that’s probably for the best.

PermalinkCommentssecurity exploit money microsoft technical

wilwheaton: owlturdcomix: Thoughts I have instead of smart...

2013 May 13, 2:31




wilwheaton:

owlturdcomix:

Thoughts I have instead of smart thoughts.

http://i.imgur.com/b9h1rc5.png

Owl Turd is rapidly becoming one of my favourite webcomics.

This may have been a Serial Experiments Lain episode synopsis.

PermalinkCommentshumor map

draft-ietf-websec-framework-reqs-00 - Web Security Framework: Problem Statement and Requirements

2013 Feb 20, 2:48

Web Security Framework: Problem Statement and Requirements

PermalinkCommentstechnical rfc security web html

Stripe CTF - Level 8

2012 Dec 7, 2:07
Level 8 of the Stripe CTF is a password server that returns success: true if and only if the password provided matches the password stored directly via a RESTful API and optionally indirectly via a callback URI. The solution is side channel attack like a timing attack but with ports instead of time.

(I found this in my drafts folder and had intended to post a while ago.)

Code

    def nextServerCallback(self, data):
parsed_data = json.loads(data)
# Chunk was wrong!
if not parsed_data['success']:
# Defend against timing attacks
remaining_time = self.expectedRemainingTime()
self.log_info('Going to wait %s seconds before responding' %
remaining_time)
reactor.callLater(remaining_time, self.sendResult, False)
return

self.checkNext()

Issue

The password server breaks the target password into four pieces and stores each on a different server. When a password request is sent to the main server it makes requests to the sub-servers for each part of the password request. It does this in series and if any part fails, then it stops midway through. Password requests may also be made with corresponding URI callbacks and after the server decides on the password makes an HTTP request on the provided URI callbacks saying if the password was success: true or false.
A timing attack looks at how long it took for a password to be rejected and longer times could mean a longer prefix of the password was correct allowing for a directed brute force attack. Timing attacks are prevented in this case by code on the password server that attempts to wait the same amount of time, even if the first sub-server responds with false. However, the server uses sequential outgoing port numbers shared between the requests to the sub-servers and the callback URIs. Accordingly, we can examine the port numbers on our callback URIs to direct a brute force attack.
If the password provided is totally incorrect then the password server will contact one sub-server and then your callback URI. So if you see the remote server's port number go up by two when requesting your callback URI, you know the password is totally incorrect. If by three then you know the first fourth of the password is correct and the rest is incorrect. If by four then two fourths of the password is correct. If by five then four sub-servers were contacted so you need to rely on the actual content of the callback URI request of 'success: true' or 'false' since you can't tell from the port change if the password was totally correct or not.
The trick in the real world is false positives. The port numbers are sequential over the system, so if the password server is the only thing making outgoing requests then its port numbers will also be sequential, however other things on the system can interrupt this. This means that the password server could contact three sub-servers and normally you'd see the port number increase by four, but really it could increase by four or more because of other things running on the system. To counteract this I ran in cycles: brute forcing the first fourth of the password and removing any entry that gets a two port increase and keeping all others. Eventually I could remove all but the correct first fourth of the password. And so on for the next parts of the password.
I wrote my app to brute force this in Python. This was my first time writing Python code so it is not pretty.
PermalinkCommentsbrute-force password python side-channel technical web

DSL modem hack used to infect millions with banking fraud malware | Ars Technica

2012 Oct 1, 6:33

According to the links within this article, although the root URI of the router requires authentication, the /password.cgi URI doesn’t and the resulting returned HTML contains (but does not display) the plaintext of the password, as well as an HTML FORM to modify the password that is exploitable by CSRF.

The attack… infected more than 4.5 million DSL modems… The CSRF (cross-site request forgery) vulnerability allowed attackers to use a simple script to steal passwords required to remotely log in to and control the devices. The attackers then configured the modems to use malicious domain name system servers that caused users trying to visit popular websites to instead connect to booby-trapped imposter sites.

PermalinkCommentstechnical security html router web dns csrf

Kim Dotcom’s Megabox: Music service or malware? | Ars Technica

2012 Sep 26, 6:40

Megabox is an ad-replacer - replacing ads on the web as you browse with its own. Ignoring security concerns, I hope this doesn’t result in over prescriptive laws that endanger things like Greasemonkey.

To listen to songs through Megabox, users will have two options—purchasing the music through the service, or installing “Megakey” software onto their computer to listen for free. The Megakey software, as Dotcom explained to Torrentfreak, acts like ad-blocking software—except that it isn’t. Megakey allows most advertisements to appear, but replaces about 15 percent of the ads served up by websites with ads hosted by Megabox.

PermalinkCommentstechnical music ad mega megadotcom megabox

laughingsquid: The Curious Government of the City of London...

2012 Sep 21, 6:10


laughingsquid:

The Curious Government of the City of London (not to be confused with London)

PermalinkCommentslondon politics history video humor

PIN number analysis

2012 Sep 19, 6:03

An analysis of leaked PIN numbers.

… nearly 11% of the 3.4 million passwords are 1234 !!!

PermalinkCommentspin security technical password

Stripe CTF - Level 7

2012 Sep 13, 5:00

Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.

Code

@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)

...

def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])

h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True

Issue

The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.

However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.

count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.

Notes

Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.

PermalinkCommentshash internet length-extension security sha1 stripe-ctf technical web

Stripe CTF - Level 5

2012 Sep 11, 5:00

Level 5 of the Stripe CTF revolved around a design issue in an OpenID like protocol.

Code

    def authenticated?(body)
body =~ /[^\w]AUTHENTICATED[^\w]*$/
end

...

if authenticated?(body)
session[:auth_user] = username
session[:auth_host] = host
return "Remote server responded with: #{body}." \
" Authenticated as #{username}@#{host}!"

Issue

This level is an implementation of a federated identity protocol. You give it an endpoint URI and a username and password, it posts the username and password to the endpoint URI, and if the response is 'AUTHENTICATED' then access is allowed. It is easy to be authenticated on a server you control, but this level requires you to authenticate from the server running the level. This level only talks to stripe CTF servers so the first step is to upload a document to the level 2 server containing the text 'AUTHENTICATED' and we can now authenticate on a level 2 server. Notice that the level 5 server will dump out the content of the endpoint URI and that the regexp it uses to detect the text 'AUTHENTICATED' can match on that dump. Accordingly I uploaded an authenticated file to

https://level02-2.stripe-ctf.com/user-ajvivlehdt/uploads/authenticated
Using that as my endpoint URI means authenticating as level 2. I can then choose the following endpoint URI to authenticate as level 5.
https://level05-1.stripe-ctf.com/user-qtoyekwrod/?pingback=https%3A%2F%2Flevel02-2.stripe-ctf.com%2Fuser-ajvivlehdt%2Fuploads%2Fauthenticated&username=a&password=a
Navigating to that URI results in the level 5 server telling me I'm authenticated as level 2 and lists the text of the level 2 file 'AUTHENTICATED'. Feeding this back into the level 5 server as my endpoint URI means level 5 seeing 'AUTHENTICATED' coming back from a level 5 URI.

Notes

I didn't see any particular code review red flags, really the issue here is that the regular expression testing for 'AUTHENTICATED' is too permisive and the protocol itself doesn't do enough. The protocol requires only a set piece of common literal text to be returned which makes it easy for a server to accidentally fall into authenticating. Having the endpoint URI have to return variable text based on the input would make it much harder for a server to accidentally authenticate.

PermalinkCommentsinternet openid security stripe-ctf technical web

Stripe CTF - XSS, CSRF (Levels 4 & 6)

2012 Sep 10, 4:43

Level 4 and level 6 of the Stripe CTF had solutions around XSS.

Level 4

Code

> Registered Users 

  • <% @registered_users.each do |user| %>
    <% last_active = user[:last_active].strftime('%H:%M:%S UTC') %>
    <% if @trusts_me.include?(user[:username]) %>

  • <%= user[:username] %>
    (password: <%= user[:password] %>, last active <%= last_active %>)
  • Issue

    The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:

    
    
    This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's password.

    Notes

    Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.

    Level 6

    Code



    ...

    def self.safe_insert(table, key_values)
    key_values.each do |key, value|
    # Just in case people try to exfiltrate
    # level07-password-holder's password
    if value.kind_of?(String) &&
    (value.include?('"') || value.include?("'"))
    raise "Value has unsafe characters"
    end
    end

    conn[table].insert(key_values)
    end

    Issue

    This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:

    
    
PermalinkCommentscsrf encoding html internet javascript percent-encoding script security stripe-ctf technical web xss
Older Entries Creative Commons License Some rights reserved.