

 Dave's Blog

 Search

 image/svg+xml

 Openclipart

 My timeline on Mastodon

 Right-To-Left Override Twitter Name
2020 Oct 21, 3:50

 Its rare to find devs anticipating Unicode control characters showing up in user input. And the most fun when unanticipated
 is the Right-To-Left Override character U+202E. Unicode characters have an implicit direction so that for example by default Hebrew characters
 are rendered from right to left, and English characters are rendered left to right. The override characters force an explicit direction for all the text that follows.

 I chose my Twitter display name to include the HTML encoding of the Right-To-Left Override character #x202E; as a sort of joke or shout out to my favorite Unicode control character.
 I did not anticipate that some Twitter clients in some of their UI would fail to encode it correctly. There's no way I can remove that from my display name now.

 Try it on Amazon.

 How about pages that want to tell you about the U+202E.

Unicode
Scrollbars in EdgeHtml WebView and Edge browser
2019 Aug 22, 5:35

 The scrollbars in UWP WebView and in Edge have different default behavior leading to many emails to my team. (Everything I talk about here is for the EdgeHtml based WebView and Edge browser and
 does not apply to the Chromium based Edge browser and WebView2).

 There is a Edge only -ms-overflow-style CSS property that controls scroll behavior. We have a
 different default for this in the WebView as compared to the Edge browser. If you want the appearance of the scrollbar in the WebView to match the browser then you must explicitly set that CSS
 property. The Edge browser default is scrollbar which gives us a Windows desktop styled non-auto-hiding scrollbar. The WebView default is -ms-autohiding-scrollbar which
 gives a sort of compromise between desktop and UWP app scrollbar behavior. In this configuration it is auto-hiding. When used with the mouse you'll get Windows desktop styled scrollbars and when
 used with touch you'll get the UWP styled scrollbars.

 Since WebViews are intended to be used in apps this style is the default in order to better match the app's scrollbars. However this difference between the browser and WebView has led to
 confusion.

 Hereâ€™s an -ms-overflow-style JSFiddle showing the difference between the two styles. Try it in the Edge browser and in WebView. An easy way to try it
 in the Edge WebView is using the JavaScript Browser.

Edge browser and JavaScript UWP app security model comparison
2018 Nov 29, 2:21

 There are two main differences in terms of security between a JavaScript UWP app and the Edge browser:

 Process Model

 A JavaScript UWP app has one process (technically not true with background tasks and other edge cases but ignoring that for the moment) that runs in the corresponding appcontainer defined by the
 app's appx manifest. This one process is where edgehtml is loaded and is rendering HTML, talking to the network, and executing script. Specifically, the UWP main UI thread is the one where your
 script is running and calling into WinRT.

 In the Edge browser there is a browser process running in the same appcontainer defined by its appx manifest, but there are also tab processes. These tab processes are running in restricted app
 containers that have fewer appx capabilities. The browser process has XAML loaded and coordinates between tabs and handles some (non-WinRT) brokering from the tab processes. The tab processes
 load edgehtml and that is where they render HTML, talk to the network and execute script.

 There is no way to configure the JavaScript UWP app's process model but using WebViews you can approximate it. You can create out of process WebViews and to some extent configure their
 capabilities, although not to the same extent as the browser. The WebView processes in this case are similar to the browser's tab processes. See the MSWebViewProcess object for configuring out of process WebView creation. I also
 implemented out of proc WebView tabs in my JSBrowser fork.

 ApplicationContentUriRules

 The ApplicationContentUriRules (ACUR) section of the appx manifest lets an application define what URIs are considered app code. See a previous post for the list of ACUR effects.

 Notably app code is able to access WinRT APIs. Because of this, DOM security restrictions are loosended to match what is possible with WinRT.

 Privileged DOM APIs like geolocation, camera, mic etc require a user prompt in the browser before use. App code does not show the same browser prompt. There still may be an OS prompt â€“ the same
 prompt that applies to any UWP app, but thatâ€™s usually per app not per origin.

 App code also gets to use XMLHttpRequest or fetch to access cross origin content. Because UWP apps have separate state, cross origin here might not mean much to an attacker unless your app also
 has the user login to Facebook or some other interesting cross origin target.

edge javascript security uwp web-security wwa
Changing the User Agent string in UWP WebView
2018 Oct 23, 9:32

 There's no perfect way to change the user agent string for the UWP WebView (x-ms-webview in HTML, Windows.UI.Xaml.Controls.WebView in XAML, and Windows.Web.UI.Interop.WebViewControl in Win32) but
 there are two imperfect methods folks end up using.

 The first is to call UrlMkSetSessionOption. This is an old public API that allows you to configure various arcane options including one that is the default user agent string for requests running
 through urlmon. This API is allowed by the Microsoft Store for UWP apps. The change it applies is process wide which has two potential drawbacks. If you want to be able to have different UA
 strings set for different requests from a WebView that's not really possible with this solution. The other drawback is if you're using out of process WebView, you need to ensure you're calling
 into UrlMkSetSessionOption in the WebView's process. You'll need to write third party WinRT that calls UrlMkSetSessionOption, create the out of proc WebView, navigate it to some trusted local
 page, use AddWebAllowedObject or provide that URI WinRT access, and call into your third party WinRT. You'll need to do that for any new WebView process you create.

 The second less generally applicable solution is to use NavigateWithHttpRequestMessage and set the User-Agent HTTP header. In this case you get to control the scope of the user agent string
 changes but has the limitations that not all sub resource downloads will use this user agent string and for navigations you don't initiate you have to manually intercept and re-request being
 careful to transfer over all POST body state and HTTP headers correctly. That last part is not actually possible for iframes.

user-agent uwp webview
GoBack/GoForward in Win10 UWP WebView
2018 Oct 23, 9:18

 The GoBack and GoForward methods on the UWP WebView (x-ms-webview in HTML, Windows.UI.Xaml.Controls.WebView in XAML, and Windows.Web.UI.Interop.WebViewControl in Win32) act the same as the Back
 and Forward buttons in the Edge browser. They don't necessarily change the top level document of the WebView. If inside the webview an iframe navigates then that navigation will be recorded in
 the forward/back history and the GoBack / GoForward call may result in navigating that iframe. This makes sense as an end user using the Edge browser since if I click a link to navigate one place
 and then hit Back I expect to sort of undo that most recent navigation regardless of if that navigation happened in an iframe or the top level document.

 If that doesn't make sense for your application and you want to navigate forward or back ignoring iframe navigates, unfortunately there's no perfect workaround.

 One workaround could be to try calling GoBack and then checking if a FrameNavigationStarting event fires or a NavigationStarting event fires. If a frame navigates then try calling GoBack again.
 There could be async races in this case since other navigates could come in and send you the wrong signal and interrupt your multi step GoBack operation.

 You could also try keeping track of all top level document navigations and manually navigate back to the URIs you care about. However, GoBack and GoForward also restore some amount of user state
 (form fills etc) in addition to navigating. Manually calling navigate will not give this same behavior.

uri uwp webview
Windows.Web.UI.Interop.WebViewControl localhost access
2018 Jul 25, 5:34

 If you're developing with the new Windows.Web.UI.Interop.WebViewControl you may have noticed you
 cannot navigate to localhost HTTP servers. This is because the WebViewControl's WebView process is a UWP process. All UWP processes by default cannot use the loopback adapter as a security
 precaution. For development purposes you can allow localhost access using the checknetisolation command line tool
 on the WebViewControl's package just as you can for any other UWP app. The command should be the following:

 checknetisolation loopbackexempt -a -n=Microsoft.Win32WebViewHost_cw5n1h2txyewy

 As a warning checknetisolation is not good on errors. If you attempt to add a package but get its package family name wrong, checknetisolation just says OK:

 C:\Users\davris>checknetisolation LoopbackExempt -a -n=Microsoft.BingWeather_4.21.2492.0_x86__8wekyb3d8bbwe
OK.
And if you then list the result of the add with the
 bad name you'll see the following:
 [1] ---
 Name: AppContainer NOT FOUND
 SID: S-1-15-...

 There's also a UI tool for modifying loopback exemption for packages available on GitHub and also one available with
 Fiddler.

 As an additional note, I mentioned above you can try this for development. Do not do this in shipping products as this turns off the security protection for any consumer of the WebViewControl.

checknetisolation loopback security uwp webview win32webview
Win10 PWA Terminology
2018 May 31, 8:26

 Folks familiar with JavaScript UWP apps in Win10 have often been confused by what PWAs in Win10 actually are. TLDR: PWAs in Win10 are simply JavaScript UWP apps. The main difference between these
 JS UWP Apps and our non-PWA JS UWP apps are our target end developer audience, and how we get Win10 PWAs into the Microsoft Store. See this Win10 blog post on PWAs on Win10 for related info.

 Web App

 On the web a subset of web sites are web apps. These are web sites that have app like behavior - that is a user might call it an app like Outlook, Maps or Gmail. And they may also have a W3C app manifest.

 A subset of web apps are progressive web apps. Progressive web apps are web apps that have a W3C app manifest and a service worker. Various
 OSes are beginning to support PWAs as first class apps on their platform. This is true for Win10 as well in which PWAs are run as a WWA.

 Windows Web App

 In Win10 a WWA (Windows Web App) is an unofficial term for a JavaScript UWP app. These are UWP apps so they have an AppxManifest.xml, they are packaged in an Appx package, they run in an App
 Container, they use WinRT APIs, and are installed via the Microsoft Store. Specific to WWAs though, is that the AppxManifest.xml specifies a StartPage attribute identifying some HTML content to
 be used as the app. When the app is activated the OS will create a WWAHost.exe process that hosts the HTML content using the EdgeHtml rendering engine.

 Packaged vs Hosted Web App

 Within that we have a notion of a packaged web app and an HWA (hosted web app). There's no real technical distinction for the end developer between these two. The only real difference is whether
 the StartPage identifies remote HTML content on the web (HWA), or packaged HTML content from the app's appx package (packaged web app). An end developer may create an app that is a mix of these
 as well, with HTML content in the package and HTML content from the web. These terms are more like ends on a continuum and identifying two different developer scenarios since the underlying
 technical aspect is pretty much identical.

 Win10 PWA

 Win10 PWAs are simply HWAs that specify a StartPage of a URI for a PWA on the web. These are still JavaScript UWP apps with all the same behavior and abilities as other UWP apps. We have two ways
 of getting PWAs into the Microsoft Store as Win10 PWAs. The first is PWA Builder which is a tool that helps PWA end developers create and submit to the
 Microsoft Store a Win10 PWA appx package. The second is a crawler that runs over the web looking for PWAs which we convert and submit to the Store using an automated PWA Builder-like tool to
 create a Win10 PWA from PWAs on the web (see Welcoming PWAs to Win10 for more info).
 In both cases the conversion involves examining the PWAs W3C app manifest and producing a corresponding AppxManifest.xml. Not all features supported by AppxManifest.xml are also available in the
 W3c app manifest. But the result of PWA Builder can be a working starting point for end developers who can then update the AppxManifest.xml as they like to support features like share targets or
 others not available in W3C app manifests.

JS pwa uwp web
Tiny browser features: JSBrowser crash resistance
2018 May 13, 4:59

 JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to
 implement tiny browser features in JavaScript and in this post I'm implementing crash resistance.

 The normal DOM mechanisms for creating an HTML WebView create an in-process WebView, in which the WebView runs on a
 unique UI thread. But we can use the MSWebView constructor instead to create an out-of-process WebView in which the WebView runs in its own distinct WebView process. Unlike an in-process WebView,
 Web content running in an out-of-process WebView can only crash the WebView process and not the app process.

 this.replaceWebView = () => {
 let webview = document.querySelector("#WebView");
 // Cannot access webview.src - anything that would need to communicate with the webview process may fail
 let oldSrc = browser.currentUrl;
 const webviewParent = webview.parentElement;
 webviewParent.removeChild(webview);
 webview = new MSWebView();
 Object.assign(this, {
 "webview": webview
 });
 webview.setAttribute("id", "WebView");

 // During startup our currentUrl field is blank. If the WebView has crashed
 // and we were on a URI then we may obtain it from this property.
 if (browser.currentUrl && browser.currentUrl != "") {
 this.trigger("newWebview");
 this.navigateTo(browser.currentUrl);
 }
 webviewParent.appendChild(webview);

 I run replaceWebView during startup to replace the in-process WebView created via HTML markup with an out-of-process WebView. I could be doing more to dynamically copy styles, attributes, etc but
 I know what I need to set on the WebView and just do that.

 When a WebView process crashes the corresponding WebView object is no longer useful and a new WebView element must be created. In fact if the old WebView object is used it may throw and will no
 longer have valid state. Accordingly when the WebView crashes I run replaceWebView again. Additionally, I need to store the last URI we've navigated to (browser.currentUrl in the above) since the
 crashed WebView object won't know what URI it is on after it crashes.

 webview.addEventListener("MSWebViewProcessExited", () => {
 if (browser.currentUrl === browser.lastCrashUrl) { ++browser.lastCrashUrlCrashCount;
 }
 else {
 browser.lastCrashUrl = browser.currentUrl;
 browser.lastCrashUrlCrashCount = 1;
 }
 // If we crash again and again on the same URI, maybe stop trying to load that URI.
 if (browser.lastCrashUrlCrashCount >= 3) {
 browser.lastCrashUrl = "";
 browser.lastCrashUrlCrashCount = 0;
 browser.currentUrl = browser.startPage;
 }
 this.replaceWebView();
 });

 I also keep track of the last URI that we recovered and how many times we've recovered that same URI. If the same URI crashes more than 3 times in a row then I assume that it will keep happening
 and I navigate to the start URI instead.

browser javascript jsbrowser uwp webview win10
Tiny browser features: JSBrowser zoom
2018 May 10, 3:49

 JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to
 implement tiny browser features in JavaScript and in this post I'm implementing zoom.

 My plan to implement zoom is to add a zoom slider to the settings div that controls the scale of the WebView element via CSS transform. My resulting zoom change is in git and you can try the whole thing out in my JSBrowser fork.

 Slider

 I can implement the zoom settings slider as a range type input HTML element. This conveniently provides me a min, max, and step property and suits exactly my purposes. I chose some values that I
 thought would be reasonable so the browser can scale between half to 3x by increments of one quarter. This is a tiny browser feature after all so there's no custom zoom entry.

 <a><label for="webviewZoom">Zoom</label><input type="range" min="50" max="300" step="25" value="100" id="webviewZoom" />

 To let the user know this slider is for controlling zoom, I make a label HTML element that says Zoom. The label HTML element has a for attribute which takes the id of another HTML element. This
 lets the browser know what the label is labelling and lets the browser do things like when the label is clicked to put focus on the slider.

 Scale

 There are no explicit scale APIs for WebView so to change the size of the content in the WebView we use CSS.

 this.applyWebviewZoom = state => {
 const minValue = this.webviewZoom.getAttribute("min");
 const maxValue = this.webviewZoom.getAttribute("max");
 const scaleValue = Math.max(Math.min(parseInt(this.webviewZoom.value, 10), maxValue), minValue) / 100;

 // Use setAttribute so they all change together to avoid weird visual glitches
 this.webview.setAttribute("style", [
 ["width", (100 / scaleValue) + "%"],
 ["height", "calc(" + (-40 / scaleValue) + "px + " + (100 / scaleValue) + "%)"],
 ["transform", "scale(" + scaleValue + ")"]
].map(pair => pair[0] + ": " + pair[1]).join("; "));
 };

 Because the user changes the scale at runtime I accordingly replace the static CSS for the WebView element with the script above to programmatically modify the style of the WebView. I change the
 style with one setAttribute call to do my best to avoid the browser performing unnecessary work or displaying the WebView in an intermediate and incomplete state. Applying the scale to the
 element is as simple as adding 'transform: scale(X)' but then there are two interesting problems.

 The first is that the size of the WebView is also scaled not just the content within it. To keep the WebView the same effective size so that it still fits properly into our browser UI, we must
 compensate for the scale in the WebView width and height. Accordingly, you can see that we scale up by scaleValue and then in width and height we divide by the scaleValue.

 transform-origin: 0% 0%;

 The other issue is that by default the scale transform's origin is the center of the WebView element. This means when scaled up all sides of the WebView would expand out. But when modifying the
 width and height those apply relative to the upper left of the element so our inverse scale application to the width and height above aren't quite enough. We also have to change the origin of the
 scale transform to match the origin of the changes to the width and height.

browser css-transform javascript JS jsbrowser uwp webview win10
Multiple Windows in Win10 JavaScript UWP apps
2018 Mar 10, 1:47

 Win10 Changes

 In Win8.1 JavaScript UWP apps we supported multiple windows using MSApp DOM APIs. In Win10 we use window.open and window and a new MSApp API getViewId and the previous MSApp APIs are gone:

 		
 Win10
 	
 Win8.1

	
 Create new window
 	
 window.open
 	
 MSApp.createNewView

	
 New window object
 	
 window
 	
 MSAppView

	
 viewId
 	
 MSApp.getViewId(window)
 	
 MSAppView.viewId

 WinRT viewId

 We use window.open and window for creating new windows, but then to interact with WinRT APIs we add the MSApp.getViewId API. It takes a window object as a parameter and returns a viewId number
 that can be used with the various Windows.UI.ViewManagement.ApplicationViewSwitcher APIs.

 Delaying Visibility

 Views in WinRT normally start hidden and the end developer uses something like TryShowAsStandaloneAsync
 to display the view once it is fully prepared. In the web world, window.open shows a window immediately and the end user can watch as content is loaded and rendered. To have your new windows act
 like views in WinRT and not display immediately we have added a window.open option. For example

 let newWindow = window.open("https://example.com", null, "msHideView=yes");

 Primary Window Differences

 The primary window that is initially opened by the OS acts differently than the secondary windows that it opens:

 		
 Primary
 	
 Secondary

	
 window.open
 	
 Allowed
 	
 Disallowed

	
 window.close
 	
 Close app
 	
 Close window

	
 Navigation restrictions
 	
 ACUR only
 	
 No restrictions

 The restriction on secondary windows such that they cannot open secondary windows could change in the future depending on feedback.

 Same Origin Communication Restrictions

 Lastly, there is a very difficult technical issue preventing us from properly supporting synchronous, same-origin, cross-window, script calls. That is, when you open a window that's same origin,
 script in one window is allowed to directly call functions in the other window and some of these calls will fail. postMessage calls work just fine and is the recommended way to do things if
 that's possible for you. Otherwise we continue to work on improving this.

MSApp.getHtmlPrintDocumentSourceAsync - JavaScript UWP app printing
2017 Oct 11, 5:49

 The documentation for printing in JavaScript UWP apps is out of date as it all references MSApp.getHtmlPrintDocumentSource but that method has been replaced by MSApp.getHtmlPrintDocumentSourceAsync since WinPhone
 8.1.

 Background

 Previous to WinPhone 8.1 the WebView's HTML content ran on the UI thread of the app. This is troublesome for rendering arbitrary web content since in the extreme case the JavaScript of some
 arbitrary web page might just sit in a loop and never return control to your app's UI. With WinPhone 8.1 we added off thread WebView in which the WebView runs HTML content on a separate UI
 thread.

 Off thread WebView required changing our MSApp.getHtmlPrintDocumentSource API which could no longer synchronously produce an HtmlPrintDocumentSource. With WebViews running on their own threads it
 may take some time for them to generate their print content for the HtmlPrintDocumentSource and we don't want to hang the app's UI thread in the interim. So the MSApp.getHtmlPrintDocumentSource
 API was replaced with MSApp.getHtmlPrintDocumentSourceAsync which returns a promise the resolved value of which is the eventual HtmlPrintDocumentSource.

 Sample

 However, the usage of the API is otherwise unchanged. So in sample code you see referencing MSApp.getHtmlPrintDocumentSource the sample code is still reasonable but you need to call
 MSApp.getHtmlPrintDocumentSourceAsync instead and wait for the promise to complete. For example the PrintManager docs has an example implementing a PrintTaskRequested event handler in a JavaScript UWP app.

 function onPrintTaskRequested(printEvent) {
 var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
 args.setSource(MSApp.getHtmlPrintDocumentSource(document));
 });

 Instead we need to obtain a deferral in the event handler so we can asynchronously wait for getHtmlPrintDocumentSourceAsync to complete:

 function onPrintTaskRequested(printEvent) {
 var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
 const deferral = args.getDeferral();
 MSApp.getHtmlPrintDocumentSourceAsync(document).then(htmlPrintDocumentSource => {
 args.setSource(htmlPrintDocumentSource);
 deferral.complete();
 }, error => {
 console.error("Error: " + error.message + " " + error.stack);
 deferral.complete();
 });
 });

javascript MSApp printing programming uwp webview win10 windows
Win10 UWP WebView AddWebAllowedObject details
2017 Sep 4, 3:09

 The x-ms-webview HTML element has the void addWebAllowedObject(string name, any value) method and the webview
 XAML element has the void AddWebAllowedObject(String name,
 Object value) method. The object parameter is projected into the webviewâ€™s top-level HTML documentâ€™s script engine as a new property on the global object with property name set to the name
 parameter. It is not injected into the current document but rather it is projected during initialization of the next top-level HTML document to which the webview navigates.

 Lifetime

 If AddWebAllowedObject is called during a NavigationStarting event handler the object will be injected into the document resulting from the navigation corresponding to that event.

 If AddWebAllowedObject is called outside of the NavigationStarting event handler it will apply to the navigation corresponding to the next explicit navigate method called on the webview or the
 navigation corresponding to the next NavigationStarting event handler that fires, whichever comes first.

 To avoid this potential race, you should use AddWebAllowedObject in one of two ways: 1. During a NavigationStarting event handler, 2. Before calling a Navigate method and without returning to the
 main loop.

 If called both before calling a navigate method and in the NavigationStarting event handler then the result is the aggregate of all those calls.

 If called multiple times for the same document with the same name the last call wins and the previous are silently ignored.

 If AddWebAllowedObject is called for a navigation and that navigation fails or redirects to a different URI, the AddWebAllowedObject call is silently ignored.

 After successfully adding an object to a document, the object will no longer be projected once a navigation to a new document occurs.

 WinRT access

 If AddWebAllowedObject is called for a document with All WinRT access then projection will succeed and the object will be added.

 If AddWebAllowedObject is called for a document which has a URI which has no declared WinRT access via ApplicationContentUriRules then Allow for web only WinRT access is given to that document.

 If the document has Allow for web only WinRT access then projection will succeed only if the objectâ€™s runtimeclass has the Windows.Foundation.Metadata.AllowForWeb metadata attribute.

 Object requirements

 The object must implement the IAgileObject interface. Because the XAML and HTML webview elements run on ASTA view threads and the webviewâ€™s contentâ€™s JavaScript thread runs on another ASTA thread
 a developer should not create their non-agile runtimeclass on the view thread. To encourage end developers to do this correctly we require the object implements IAgileObject.

 Property name

 The name parameter must be a valid JavaScript property name, otherwise the call will fail silently. If the name is already a property name on the global object, that property is overwritten if
 the property is configurable. Non-configurable properties on the global object are not overwritten and the AddWebAllowedObject call fails silently. On success, the projected property is writable,
 configurable, and enumerable.

 Errors

 Some errors as described above fail silently. Other issues, such as lack of IAgileObject or lack of the AllowForWeb attribute result in an error in the JavaScript developer console.

Application Content URI Rule effects
2017 Jun 30, 3:01

 Previously I described Application Content URI Rules (ACUR) parsing and ACUR ordering. This post describes what you get from putting a URI in ACUR.

 URIs in the ACUR gain the following which is otherwise unavailable:

 	Geoloc API usage

	Audio and video capture API usage

	Pointer lock API usage

	Web notifications API usage

	IndexedDB API usage

	Clipboard API usage

	window.external.notify access from within webview

	window.close the primary window

	Top level navigation in the primary window

	Cross origin XHR and fetch to ms-appx(-web) scheme URIs

	Cross origin dirtied canvas read access if dirtied by ms-appx(-web) scheme URIs

	Cross origin text track for video element for tracks from ms-appx(-web) scheme URIs

 URIs in the ACUR that also have full WinRT access additionally gain the following:

 	Cross origin XHR and fetch

	Cross origin dirtied canvas read access

	Cross origin text track for video element

	Local audio and video WinRT plugins work with media elements

application-content-uri-rules coding javascript programming windows-store
JavaScript Microsoft Store app StartPage
2017 Jun 22, 8:58

 JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which Iâ€™ll describe here.

 StartPage syntax

 The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for
 that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling
 activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesnâ€™t parse as an absolute URI then it is
 instead interpreted as relative Windows file path.

 This implies a few things that Iâ€™ll declare explicitly here. Windows file paths, unlike URIs, donâ€™t have a query or fragment, so if you are using a relative Windows file path for your StartPage
 attribute you cannot include anything like â€˜?param=valueâ€™ at the end. Absolute URIs use percent-encoding for reserved characters like â€˜%â€™ and â€˜#â€™. If you have a â€˜#â€™ in your HTML filename then you
 need to percent-encode that â€˜#â€™ for a URI and not for a relative Windows file path.

 If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a
 base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch
 to using a URI so you can include a query or fragment, you can follow the same steps above.

 StartPage validity

 The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesnâ€™t exist, or an absolute URI that is not in the
 Application Content URI Rules, or something that doesnâ€™t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript
 app will navigate to the appâ€™s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs
 are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.

 StartPage navigation

 When your app is activated for a particular activation kind, the StartPage value from the entry in your appâ€™s manifest that corresponds to that activation kind is used as the navigation target.
 If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated event is fired (more details on
 the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or donâ€™t navigate to the corresponding StartPage depending on the current
 page of the app. Take the appâ€™s current top level documentâ€™s URI and if after removing the fragment it already matches the StartPage value then we wonâ€™t navigate and will jump straight to firing
 the WebUIApplication activated event.

 Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
 MSApp.pageHandlesAllApplicationActivations(true) API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
 does require of course that all of your pages all handle all activation kinds about which any part of your app cares.

Application Content URI Rules rule ordering
2017 Jun 1, 1:30

 Application Content URI Rules (ACUR from now on) defines the bounds on
 the web that make up a Microsoft Store application. The previous blog post discussed the syntax of the
 Rule's Match attribute and this time I'll write about the interactions between the Rules elements.

 Order

 A single ApplicationContentUriRules element may have up to 100 Rule child elements. When determining if a navigation URI matches any of the ACUR the last Rule in the list with a matching match
 wildcard URI is used. If that Rule is an include rule then the navigation URI is determined to be an application content URI and if that Rule is an exclude rule then the navigation rule is not an
 application content URI. For example:

 Rule Type='include' Match='https://example.com/'/
Rule Type='exclude' Match='https://example.com/'/

 Given the above two rules in that order, the navigation URI https://example.com/ is not an application content URI because the last matching rule is the exclude rule. Reverse the order of the
 rules and get the opposite result.

 WindowsRuntimeAccess

 In addition to determining if a navigation URI is application content or not, a Rule may also confer varying levels of WinRT access via the optional WindowsRuntimeAccess attribute which may be
 set to 'none', 'allowForWeb', or 'all'. If a navigation URI matches multiple different include rules only the last rule is applied even as it applies to the WindowsRuntimeAccess attribute. For
 example:

 Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='none'/
Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='all'/

 Given the above two rules in that order, the navigation URI https://example.com/ will have access to all WinRT APIs because the last matching rule wins. Reverse the rule order and the navigation
 URI https://example.com/ will have no access to WinRT. There is no summation or combining of multiple matching rules - only the last matching rule wins.

application-content-uri-rules programming uri windows windows-store
Application Content URI Rules wildcard syntax
2017 May 31, 4:48

 Application Content URI Rules (ACUR from now on) defines the bounds of
 the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https
 you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if
 they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.

 Rules

 You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed
 with CreateUri and when matching against URIs on the web additional wildcard processing is performed. Iâ€™ll call the
 URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.

 The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any
 value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value
 in it.

 Asterisk

 Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the
 asterisk matches whatever it can within the component.

 Host

 For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example,
 http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and
 http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example,
 http://*.com is also restricted for Store submission.

 Path

 For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c
 or http://example.com/a/c

 Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and
 http://example.com/a/b/c/d/e/, but not http://example.com/b/.

 If the path doesnâ€™t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.

 As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the
 URI and case sensitive comparisons will be performed), IDN normalization will be performed, â€˜.â€™ and â€˜..â€™ path segments will be resolved and other normalizations as described in the CreateUri
 documentation.

application-content-uri-rules programming windows windows-store
Tweet from Acid Burn
2017 Jan 27, 11:00
 Orwell's here and now, he's living large. We have no names, man, no names. We are nameless. Can I score a fry? Thanks.

Tweet from Acid Burn
2017 Jan 27, 1:00
 DADE: Pool on the roof must have a leak.

Tweet from NASA Planetquest
2017 Jan 26, 10:25
 See another solar system! These are real images of a 4-planet system ~130 light-years from #Earth. Read about it: http://go.nasa.gov/2kySSt1

Tweet from Joshua Topolsky
2017 Jan 22, 10:45
 This

 Older Entries
 Some rights reserved.

