Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.
@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)
...
def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])
h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True
The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.
However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the
following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new
request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.
Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.
Level 5 of the Stripe CTF revolved around a design issue in an OpenID like protocol.
def authenticated?(body)
body =~ /[^\w]AUTHENTICATED[^\w]*$/
end
...
if authenticated?(body)
session[:auth_user] = username
session[:auth_host] = host
return "Remote server responded with: #{body}." \
" Authenticated as #{username}@#{host}!"
This level is an implementation of a federated identity protocol. You give it an endpoint URI and a username and password, it posts the username and password to the endpoint URI, and if the response is 'AUTHENTICATED' then access is allowed. It is easy to be authenticated on a server you control, but this level requires you to authenticate from the server running the level. This level only talks to stripe CTF servers so the first step is to upload a document to the level 2 server containing the text 'AUTHENTICATED' and we can now authenticate on a level 2 server. Notice that the level 5 server will dump out the content of the endpoint URI and that the regexp it uses to detect the text 'AUTHENTICATED' can match on that dump. Accordingly I uploaded an authenticated file to
https://level02-2.stripe-ctf.com/user-ajvivlehdt/uploads/authenticated
Using that as my endpoint URI means authenticating as level 2. I can then choose the following endpoint
URI to authenticate as level 5.
https://level05-1.stripe-ctf.com/user-qtoyekwrod/?pingback=https%3A%2F%2Flevel02-2.stripe-ctf.com%2Fuser-ajvivlehdt%2Fuploads%2Fauthenticated&username=a&password=a
Navigating
to that URI results in the level 5 server telling me I'm authenticated as level 2 and lists the text of the level 2 file 'AUTHENTICATED'. Feeding this back into the level 5 server as my endpoint
URI means level 5 seeing 'AUTHENTICATED' coming back from a level 5 URI.
I didn't see any particular code review red flags, really the issue here is that the regular expression testing for 'AUTHENTICATED' is too permisive and the protocol itself doesn't do enough. The protocol requires only a set piece of common literal text to be returned which makes it easy for a server to accidentally fall into authenticating. Having the endpoint URI have to return variable text based on the input would make it much harder for a server to accidentally authenticate.
Level 4 and level 6 of the Stripe CTF had solutions around XSS.
> Registered Users
<%= user[:username] %>
(password: <%= user[:password] %>, last active <%= last_active %>)
The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:
This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's
password.
Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.
...
def self.safe_insert(table, key_values)
key_values.each do |key, value|
# Just in case people try to exfiltrate
# level07-password-holder's password
if value.kind_of?(String) &&
(value.include?('"') || value.include?("'"))
raise "Value has unsafe characters"
end
end
conn[table].insert(key_values)
end
This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:
I was the 546th person to complete Stripe's web security CTF and again had a ton of fun applying my theoretical knowledge of web security issues to the (semi-)real world. As I went through the levels I thought about what red flags jumped out at me (or should have) that I could apply to future code reviews:
Level | Issue | Code Review Red Flags |
---|---|---|
0 | Simple SQL injection | No encoding when constructing SQL command strings. Constructing SQL command strings instead of SQL API |
1 | extract($_GET); | No input validation. |
2 | Arbitrary PHP execution | No input validation. Allow file uploads. File permissions modification. |
3 | Advanced SQL injection | Constructing SQL command strings instead of SQL API. |
4 | HTML injection, XSS and CSRF | No encoding when constructing HTML. No CSRF counter measures. Passwords stored in plain text. Password displayed on site. |
5 | Pingback server doesn't need to opt-in | n/a - By design protocol issue. |
6 | Script injection and XSS | No encoding while constructing script. Deny list (of dangerous characters). Passwords stored in plain text. Password displayed on site. |
7 | Length extension attack | Custom crypto code. Constructing SQL command string instead of SQL API. |
8 | Side channel attack | Password handling code. Timing attack mitigation too clever. |
More about each level in the future.
Stripe is running a web security capture the flag - a series of increasingly difficult web security exploit challenges. I've finished it and had a lot of fun. Working on a web browser I knew the theory of these various web based attacks, but this was my first chance to put theory into practice with:
Here's a blog post on the CTF behind the scenes setup which has many impressive features including phantom users that can be XSS/CSRF'ed.
I'll have another post on my difficulties and answers for the CTF levels after the contest is over on Wed, but if you're looking for hints, try out the CTF chatroom or the level specific CTF chatroom.
Zineth Release Trailer (by Russell Honor)
This is a student game. Amazing design and music. A more abstract, massive and fast Jet Set Radio.
The U.S. Census Bureau today released a new online service that makes key demographic, socio-economic and housing statistics more accessible than ever before. The Census Bureau’s first-ever public Application Programming Interface (API) allows developers to design Web and mobile apps to explore or learn more about America’s changing population and economy.
HTTP Content Coding Token | gzip | deflate | compress |
---|---|---|---|
An encoding format produced by the file compression program "gzip" (GNU zip) | The "zlib" format as described in RFC 1950. | The encoding format produced by the common UNIX file compression program "compress". | |
Data Format | GZIP file format | ZLIB Compressed Data Format | The compress program's file format |
Compression Method | Deflate compression method | LZW | |
Deflate consists of LZ77 and Huffman coding |
Compress doesn't seem to be supported by popular current browsers, possibly due to its past with patents.
Deflate isn't done correctly all the time. Some servers would send the deflate data format instead of the zlib data format and at least some versions of Internet Explorer expect deflate data format instead of zlib data format.
So this is another Stuxnet by Israel/US?
The analysis reinforces theories that researchers from Kaspersky Lab, CrySyS Lab, and Symantec published almost two weeks ago. Namely, Flame could only have been developed with the backing of a wealthy nation-state. … “It’s not a garden-variety collision attack, or just an implementation of previous MD5 collisions papers—which would be difficult enough,” Matthew Green, a professor specializing in cryptography in the computer science department at Johns Hopkins University, told Ars. “There were mathematicians doing new science to make Flame work.”
[via motherjones]:
Sticking to an exercise routine takes dedication, and many fitness junkies swear that a running companion can be a huge help. That’s why researchers have developed “Joggobot,” a quad-rotor helicopter drone designed to motivate joggers by flying in front of them.
The aerial robot uses its camera to spot a colorful pattern on a T-shirt worn by the jogger, and flies at a safe distance ahead. The runner can control Joggobot using a smartphone: In “companion mode,” the drone simply maintains the jogger’s pace; in “coach mode,” it pushes its human trainee a little faster.
Don’t worry, there’s a video
Science!
Maybe it should chase you instead?
The conversation surrounding how to liberate HBO from its cable partners and create the entertainment utopia viewers have long desired has been fascinating.
The resulting analyses of the numbers has pretty much shown that the amount people are willing to pay is not nearly enough to…
Use of my old Hotmail account has really snuck up on me as I end up caring more and more about all of the services with which it is associated. The last straw is Windows 8 login, but previous straws include Xbox, Zune, SkyDrive, and my Windows 7 Phone. I like the features and sync'ing associated with the Windows Live ID, but I don't like my old, spam filled, hotmail email address on the Live ID account.
A coworker told me about creating a Live ID from a custom domain, which sounded like just the ticket for me. Following the instructions above I was able to create a new deletethis.net Live ID but the next step of actually using this new Live ID was much more difficult. My first hope was there would be some way to link my new and old Live IDs so as to make them interchangeable. As it turns out there is a way to link Live IDs but all that does is make it easy to switch between accounts on Live Mail, SkyDrive and some other webpages.
Instead one must change over each service or start over depending on the service:
“From his first months in office, President Obamasecretly ordered increasingly sophisticated attacks on the computer systems that run Iran’s main nuclear enrichment facilities, significantly expanding America’s first sustained use of cyberweapons, according to participants in the program.”
A House subcommittee has passed the Global Online Freedom Act (GOFA), which would require disclosure from companies about their human rights practices and limit the export of technologies that “serve the primary purpose of” facilitating government surveillance or censorship to countries designated as “Internet-restricting.”
Specifically Twitter has said that they will only used these assigned patent rights defensively to protect themselves against hostile actions. And further that any company that acquires these patent rights from Twitter will need the inventor’s consent to use them in an offensive action. Twitter has also provided the inventor with certain rights to license the patent to others for defensive purposes. You can read the entire set of provisions on GitHub.
Set of issues run into by children using iPad apps. Should be generally appropriate though:
“Designing apps for children is extremely hard. Not only is quality, age-appropriate content hard to create, but designing the flow and interaction of these apps is made more difficult because designers must refrain from implementing advanced gestures, which would only confuse and frustrate kids (and, by extension, their parents). Yet all apps can and should adhere to certain basics. Hopefully, the four guidelines discussed here can become fixtures of all children’s apps.”
Shortly after joining the Internet Explorer team I got a bug from a PM on a popular Microsoft web server product that I'll leave unnamed (from now on UWS). The bug said that IE was handling empty path segments incorrectly by not removing them before resolving dotted path segments. For example UWS would do the following:
A.1. http://example.com/a/b//../
A.2. http://example.com/a/b/../
A.3. http://example.com/a/
In step 1 they are given a URI with dotted path segment and an empty
path segment. In step 2 they remove the empty path segment, and in step 3 they resolve the dotted path segment. Whereas, given the same initial URI, IE would do the following:
B.1. http://example.com/a/b//../
B.2. http://example.com/a/b/
IE simply resolves the dotted path segment against the empty path segment and removes them both. So, how
did I resolve this bug? As "By Design" of course!
The URI RFC allows path segments of zero length and does not assign them any special meaning. So generic user agents that intend to work on the web must not treat an empty path segment any different from a path segment with some text in it. In the case above IE is doing the correct thing.
That's the case for generic user agents, however servers may decide that a URI with an empty path segment returns the same resource as a the same URI without that empty path segment. Essentially they can decide to ignore empty path segments. Both IIS and Apache work this way and thus return the same resource for the following URIs:
http://exmaple.com/foo//bar///baz
http://example.com/foo/bar/baz
The issue for UWS is that it removes empty path segments before resolving dotted path segments. It must
follow normal URI procedure before applying its own additional rules for empty path segments. Not doing that means they end up violating URI equivalency rules: URIs (A.1) and (B.2) are equivalent
but UWS will not return the same resource for them.
“It’s not that common to find a signed copy of malware. It’s even rarer that it’s signed with an official key belonging to a government.”