Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BROWSER_EMULATION]
"Fitbit Connect.exe"=dword:000022b8
For
those familiar with the Windows registry the above should be enough. For those not familiar, copy and paste the above into notepad, save as a file named "fitbit.reg", and then double click the reg
file and say 'Yes' to the prompt. Hopefully in the final release of Windows 8.1 this won't be an issue.
WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
drug companies hiding the results of clinical trials.
(via I did a new talk at TED, on drug companies and hidden data.)
Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.
@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)
...
def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])
h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True
The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.
However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the
following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new
request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.
Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.
Level 5 of the Stripe CTF revolved around a design issue in an OpenID like protocol.
def authenticated?(body)
body =~ /[^\w]AUTHENTICATED[^\w]*$/
end
...
if authenticated?(body)
session[:auth_user] = username
session[:auth_host] = host
return "Remote server responded with: #{body}." \
" Authenticated as #{username}@#{host}!"
This level is an implementation of a federated identity protocol. You give it an endpoint URI and a username and password, it posts the username and password to the endpoint URI, and if the response is 'AUTHENTICATED' then access is allowed. It is easy to be authenticated on a server you control, but this level requires you to authenticate from the server running the level. This level only talks to stripe CTF servers so the first step is to upload a document to the level 2 server containing the text 'AUTHENTICATED' and we can now authenticate on a level 2 server. Notice that the level 5 server will dump out the content of the endpoint URI and that the regexp it uses to detect the text 'AUTHENTICATED' can match on that dump. Accordingly I uploaded an authenticated file to
https://level02-2.stripe-ctf.com/user-ajvivlehdt/uploads/authenticated
Using that as my endpoint URI means authenticating as level 2. I can then choose the following endpoint
URI to authenticate as level 5.
https://level05-1.stripe-ctf.com/user-qtoyekwrod/?pingback=https%3A%2F%2Flevel02-2.stripe-ctf.com%2Fuser-ajvivlehdt%2Fuploads%2Fauthenticated&username=a&password=a
Navigating
to that URI results in the level 5 server telling me I'm authenticated as level 2 and lists the text of the level 2 file 'AUTHENTICATED'. Feeding this back into the level 5 server as my endpoint
URI means level 5 seeing 'AUTHENTICATED' coming back from a level 5 URI.
I didn't see any particular code review red flags, really the issue here is that the regular expression testing for 'AUTHENTICATED' is too permisive and the protocol itself doesn't do enough. The protocol requires only a set piece of common literal text to be returned which makes it easy for a server to accidentally fall into authenticating. Having the endpoint URI have to return variable text based on the input would make it much harder for a server to accidentally authenticate.
Stripe's web security CTF's Level 1 and level 2 of the Stripe CTF had issues with missing input validation solutions described below.
$filename = 'secret-combination.txt';
extract($_GET);
if (isset($attempt)) {
$combination = trim(file_get_contents($filename));
if ($attempt === $combination) {
The issue here is the usage of the extract php method which extracts name value pairs from the map input parameter and creates corresponding local variables. However this code uses $_GET which contains a map of name value pairs passed in the query of the URI. The expected behavior is to get an attempt variable out, but since no input validation is done I can provide a filename variable and overwrite the value of $filename. Providing an empty string gives an empty string $combination which I can match with an empty string $attempt. So without knowing the combination I can get past the combination check.
Code review red flag in this case was the direct use of $_GET with no validation. Instead of using extract the developer could try to extract specifically the attempt variable manually without using extract.
$dest_dir = "uploads/";
$dest = $dest_dir . basename($_FILES["dispic"]["name"]);
$src = $_FILES["dispic"]["tmp_name"];
if (move_uploaded_file($src, $dest)) {
$_SESSION["dispic_url"] = $dest;
chmod($dest, 0644);
echo "Successfully uploaded your display picture.
";
}
This code accepts POST uploads of images but with no validation to ensure it is not an arbitrary file. And even though it uses chmod to ensure the file is not executable, things like PHP don't require a file to be executable in order to run them. Accordingly, one can upload a PHP script, then navigate to that script to run it. My PHP script dumped out the contents of the file we're interested in for this level:
Code review red flags include manual file management, chmod, and use of file and filename inputs without any kind of validation. If this code controlled the filename and ensured that the extension was one of a set of image extensions, this would solve this issue. Due to browser mime sniffing its additionally a good idea to serve a content-type that starts with "image/" for these uploads to ensure browsers treat these as images and not sniff for script or HTML.
(via Pareidoloop)
“Phil McCarthy’s Pareidoloop overlays randomly generated polygons on top of one another until facial recognition software recognizes a human face. Can’t sleep, at SIGGRAPH! [via @Brandonn]”
(via Classic pro-science-careers music video PSA: Chemical Party)
Xeni says: “The EU wasn’t always so terrible at promoting science careers through funny internet music videos! (thanks, Guido)”
Use of my old Hotmail account has really snuck up on me as I end up caring more and more about all of the services with which it is associated. The last straw is Windows 8 login, but previous straws include Xbox, Zune, SkyDrive, and my Windows 7 Phone. I like the features and sync'ing associated with the Windows Live ID, but I don't like my old, spam filled, hotmail email address on the Live ID account.
A coworker told me about creating a Live ID from a custom domain, which sounded like just the ticket for me. Following the instructions above I was able to create a new deletethis.net Live ID but the next step of actually using this new Live ID was much more difficult. My first hope was there would be some way to link my new and old Live IDs so as to make them interchangeable. As it turns out there is a way to link Live IDs but all that does is make it easy to switch between accounts on Live Mail, SkyDrive and some other webpages.
Instead one must change over each service or start over depending on the service:
I'm done playing Fez. The style is atmospheric retro nastalgia and on the surface the gameplay is standard 2D platformer with one interesting Flatland style game mechanic but dig deeper to find Myst style puzzles. Despite the following I thoroughly enjoyed the game and would recommend it to anyone intrigued by the previous. Five eighths through the game I ran into one of the game's infamous Fez save game breaking issues, but I enjoyed the game enough that I started over before any patches were released and had no further issues.
While playing the game I created some tools to help keep track of my Fez notes (spoilers) including a Pixelated Image Creator that makes it easy to generate data URIs for large, black and white pixelated images, and (spoilers) a Fez Transliteration Tool to help me translate the in-game writing system.
Hmmm
“This rather embarrassing issue was pointed out to the committee, the fact that there were three votes too many, and that these three votes determined the outcome. When this was done, along with formally requesting a re-vote, that re-vote on the points in question was denied.”
Dark Patterns are UI patterns used to trick users into doing things they’d otherwise rather not: buy traveler’s insurance, click on ads, etc. Covers the anti-patterns and how we as technical folk can help stop this.
The goal of this experiment was to combine the flipping tables emoticons with the Threw It On The Ground video using shiny new HTML5-ish features and the end result is the table flipper flipping the Threw It On the Ground video.
The table flipper emoticon is CSS before content that changes on hover. Additionally on hover a CSS transform is applied to flip the video upside down several times and move it to the right and there's a CSS transition to animate the flipping. The only issue I ran into is that (at least on Windows) Flash doesn't like to have CSS transform rotations applied to it. So to get the most out of the flip experiment you must opt-in to HTML5 video on YouTube. And of course you must use a browser that supports the various things I just mentioned, like the latest Chrome (or not yet released IE10).
I've been working on the Glitch Helperator. It is a collection of tools and things I've put together for Glitch. It has a few features that I haven't seen elsewhere including:
Elaborating on a previous brief post on the topic of Web Worker initialization race conditions, there's two important points to avoid a race condition when setting up a Worker:
For example the following has no race becaues the spec guarentees that messages posted to a worker during its first synchronous block of execution will be queued and handled after that block. So the worker gets a chance to setup its onmessage handler. No race:
'parent.js':
var worker = new Worker();
worker.postMessage("initialize");
'worker.js':
onmessage = function(e) {
// ...
}
The following has a race because there's no guarentee that the parent's onmessage handler is setup before the worker executes postMessage. Race (violates 1):
'parent.js':
var worker = new Worker();
worker.onmessage = function(e) {
// ...
};
'worker.js':
postMessage("initialize");
The following has a race because the worker has no onmessage handler set in its first synchronous execution block and so the parent's postMessage may be sent before the worker sets its onmessage handler. Race (violates 2):
'parent.js':
var worker = new Worker();
worker.postMessage("initialize");
'worker.js':
setTimeout(
function() {
onmessage = function(e) {
// ...
}
},
0);
Sarah and I have been enjoying Glitch for a while now. Reviews are usually positive although occasionally biting (but mostly accurate).
I enjoy Glitch as a game of exploration: exploring the game's lands with hidden and secret rooms, and exploring the games skills and game mechanics. The issue with my enjoyment coming from exploration is that after I've explored all streets and learned all skills I've got nothing left to do. But I've found that even after that I can have fun writing client side JavaScript against Glitch's web APIs making tools (I work on the Glitch Helperator) for use in Glitch. And on a semi-regular basis they add new features reviving my interest in the game itself.