WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
A former State Department lawyer has his doubts, and a famous cartoonist predicts jury nullification.
In IE10 and other new browsers one may create MessageChannel objects that have two MessagePorts each connected (w3c spec calls it entangled) to one another such that postMessage on one port results in the message event firing on the other. You can pass an array of ports as the last parameter to postMessage and they show up in the ports property of the message event arg.
The postMessage here is like the worker postMessage and unlike the window and iframe postMessage in that it applies no origin checking:
Unfortunately the origin isn't an optional parameter at the end to make the two postMessages have the same signature.
On the event handler side, the event arg always has an origin property. But in the no origin case it is always the empty string.
There is also a source property on the message event arg which if set is an object that has a postMessage property allowing you to post back to your caller. It is set for the origin case, however, in the no origin case this property is null. This is somewhat reasonable because in the case of MessagePort and Workers there are only two endpoints so you always know the source of a message implicitly. Unlike the origin case in which any iframe or window can be calling postMessage on any other iframe or window and the caller is unknown. So not unreasonable but it would be nice if the source property was always set for consistency.
When a MessageChannel is created it has two MessagePorts, but until those ports are started they will queue up any messages they receive. Once started they will dispatch all queued messages. Ports don't have to be started to send messages.
A port may be started in two ways, either by explicitly calling the start method on the port, or by setting the onmessage callback property on the port. However, adding an event listener via addEventListener("message", does not start the port. It works this way in IE and Chrome and the spec states this as well.
The justification is that since you can have only one callback via onmessage that once set you must implicitly be ready to receive messages and its fine to start the port. As opposed to the addEventListener in which case the user agent cannot start implicitly because it doesn't know how many event listeners will be added. I found Hixie stating this justification in geoloc meeting notes.
My second completed app for the Windows Store was Words with Hints a companion to Words with Friends or other Scrabble like games that gives you *ahem* hints. You provide your tiles and optionally letters placed in a line on the board and Words with Hints gives you word options.
I wrote this the first time by building a regular expression to check against my dictionary of words which made for a slow app on the Surface. In subsequent release of the app I now spawn four web workers (one for each of the Surface's cores) each with its own fourth of my dictionary. Each fourth of the dictionary is a trie which makes it easy for me to discard whole chunks of possible combinations of Scrabble letters as I walk the tree of possibilities.
The dictionaries are large and takes a noticeable amount of time to load on the Surface. The best performing mechanism I found to load them is as JavaScript source files that simply define their portion of the dictionary on the global object and synchronously (only on the worker so not blocking the UI thread). Putting them into .js files means they take advantage of bytecode caching making them load faster. However because the data is mostly strings and not code there is a dramatic size increase when the app is installed. The total size of the four dictionary .js files is about 44Mb. The bytecode cache for the dictionary files is about double that 88Mb meaning the dictionary plus the bytecode cache is 132Mb.
To handle the bother of postMessage communication and web workers this was the first app in which I used my promise MessagePort project which I'll discuss more in the future.
This is the first app in which I used the Microsoft Ad SDK. It was difficult to find the install for the SDK and difficult to use their website, but once setup, the Ad SDK was easy to import into VS and easy to use in my app.
If you want to represent a value larger than 32bits in an enum in MSVC++ you can use C++0x style syntax to tell the compiler exactly what kind of integral type to store the enum values. Unfortunately by default an enum is always 32bits, and additionally while you can specify constants larger than 32bits for the enum values, they are silently truncated to 32bits.
For instance the following doesn't compile because Lorem::a and Lorem::b have the same value of '1':
enum Lorem {
a = 0x1,
b = 0x100000001
} val;
switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}
Unfortunately it is not an error to have b's constant truncated, and the previous without the switch statement does compile just fine:
enum Lorem {
a = 0x1,
b = 0x100000001
} val;
But you can explicitly specify that the enum should be represented by a 64bit value and get expected compiling behavior with the following:
enum Lorem : UINT64 {
a = 0x1,
b = 0x100000001
} val;
switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}
My first app for Windows 8 was Shout Text. You type into Shout Text, and your text is scaled up as large as possible while still fitting on the screen, as you type. It is the closest thing to a Hello World app as you'll find on the Windows Store that doesn't contain that phrase (by default) and I approached it as the simplest app I could make to learn about Windows modern app development and Windows Store app submission.
I rely on WinJS's default layout to use CSS transforms to scale up the user's text as they type. And they are typing into a simple content editable div.
The app was too simple for me to even consider using ads or charging for it which I learned more about in future apps.
The first interesting issue I ran into was that copying from and then pasting into the content editable div resulted in duplicates of the containing div with copied CSS appearing recursively inside of the content editable div. To fix this I had to catch the paste operation and remove the HTML data from the clipboard to ensure only the plain text data is pasted:
function onPaste() {
var text;
if (window.clipboardData) {
text = window.clipboardData.getData("Text").toString();
window.clipboardData.clearData("Html");
window.clipboardData.setData("Text", util.normalizeContentEditableText(text));
}
}
shoutText.addEventListener("beforepaste", function () { return false; }, false);
shoutText.addEventListener("paste", onPaste, false);
I additionally found an issue in IE in which applying a CSS transform to a content editable div that has focus doesn't move the screen position of the user input caret - the text is scaled up or down but the caret remains the same size and in the same place on the screen. To fix this I made the following hack to reapply the current cursor position and text selection which resets the screen position of the user input caret.
function resetCaret() {
setTimeout(function () {
var cursorPos = document.selection.createRange().duplicate();
cursorPos.select();
}, 200);
}
shoutText.attachEvent("onresize", function () { resetCaret(); }, true);
What It All Means: All Your Communications are Belong to U.S. In sum, if you use encryption they’ll keep your data forever. If you use Tor, they’ll keep your data for at least five years. If an American talks with someone outside the US, they’ll keep your data for five years. If you’re talking to your attorney, you don’t have any sense of privacy. And the NSA can hand over you information to the FBI for evidence of any crime, not just terrorism. All without a warrant or even a specific FISA order.
Not sure if this is saying all Tor data is collected or saying if someone uses Tor then start collecting that someone’s communication.
Moral: laws should cover behavior not specific technologies. The implementation can change, laws shouldn’t take such dependencies.
According to the links within this article, although the root URI of the router requires authentication, the /password.cgi URI doesn’t and the resulting returned HTML contains (but does not display) the plaintext of the password, as well as an HTML FORM to modify the password that is exploitable by CSRF.
The attack… infected more than 4.5 million DSL modems… The CSRF (cross-site request forgery) vulnerability allowed attackers to use a simple script to steal passwords required to remotely log in to and control the devices. The attackers then configured the modems to use malicious domain name system servers that caused users trying to visit popular websites to instead connect to booby-trapped imposter sites.
drug companies hiding the results of clinical trials.
(via I did a new talk at TED, on drug companies and hidden data.)
Welcome news. Glad to hear they’re looking for improvements.
… the USPTO has also worked with Stack Exchange, … to create a new site called Ask Patents. … Examiners or others looking for prior art can post questions about a specific application, and members of the general public can respond with evidence that an applicant was not the first to invent the subject matter of the application.
Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.
@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)
...
def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])
h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True
The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.
However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the
following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new
request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.
Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.
Level 5 of the Stripe CTF revolved around a design issue in an OpenID like protocol.
def authenticated?(body)
body =~ /[^\w]AUTHENTICATED[^\w]*$/
end
...
if authenticated?(body)
session[:auth_user] = username
session[:auth_host] = host
return "Remote server responded with: #{body}." \
" Authenticated as #{username}@#{host}!"
This level is an implementation of a federated identity protocol. You give it an endpoint URI and a username and password, it posts the username and password to the endpoint URI, and if the response is 'AUTHENTICATED' then access is allowed. It is easy to be authenticated on a server you control, but this level requires you to authenticate from the server running the level. This level only talks to stripe CTF servers so the first step is to upload a document to the level 2 server containing the text 'AUTHENTICATED' and we can now authenticate on a level 2 server. Notice that the level 5 server will dump out the content of the endpoint URI and that the regexp it uses to detect the text 'AUTHENTICATED' can match on that dump. Accordingly I uploaded an authenticated file to
https://level02-2.stripe-ctf.com/user-ajvivlehdt/uploads/authenticated
Using that as my endpoint URI means authenticating as level 2. I can then choose the following endpoint
URI to authenticate as level 5.
https://level05-1.stripe-ctf.com/user-qtoyekwrod/?pingback=https%3A%2F%2Flevel02-2.stripe-ctf.com%2Fuser-ajvivlehdt%2Fuploads%2Fauthenticated&username=a&password=a
Navigating
to that URI results in the level 5 server telling me I'm authenticated as level 2 and lists the text of the level 2 file 'AUTHENTICATED'. Feeding this back into the level 5 server as my endpoint
URI means level 5 seeing 'AUTHENTICATED' coming back from a level 5 URI.
I didn't see any particular code review red flags, really the issue here is that the regular expression testing for 'AUTHENTICATED' is too permisive and the protocol itself doesn't do enough. The protocol requires only a set piece of common literal text to be returned which makes it easy for a server to accidentally fall into authenticating. Having the endpoint URI have to return variable text based on the input would make it much harder for a server to accidentally authenticate.
Level 4 and level 6 of the Stripe CTF had solutions around XSS.
> Registered Users
<%= user[:username] %>
(password: <%= user[:password] %>, last active <%= last_active %>)
The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:
This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's
password.
Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.
...
def self.safe_insert(table, key_values)
key_values.each do |key, value|
# Just in case people try to exfiltrate
# level07-password-holder's password
if value.kind_of?(String) &&
(value.include?('"') || value.include?("'"))
raise "Value has unsafe characters"
end
end
conn[table].insert(key_values)
end
This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:
I was the 546th person to complete Stripe's web security CTF and again had a ton of fun applying my theoretical knowledge of web security issues to the (semi-)real world. As I went through the levels I thought about what red flags jumped out at me (or should have) that I could apply to future code reviews:
Level | Issue | Code Review Red Flags |
---|---|---|
0 | Simple SQL injection | No encoding when constructing SQL command strings. Constructing SQL command strings instead of SQL API |
1 | extract($_GET); | No input validation. |
2 | Arbitrary PHP execution | No input validation. Allow file uploads. File permissions modification. |
3 | Advanced SQL injection | Constructing SQL command strings instead of SQL API. |
4 | HTML injection, XSS and CSRF | No encoding when constructing HTML. No CSRF counter measures. Passwords stored in plain text. Password displayed on site. |
5 | Pingback server doesn't need to opt-in | n/a - By design protocol issue. |
6 | Script injection and XSS | No encoding while constructing script. Deny list (of dangerous characters). Passwords stored in plain text. Password displayed on site. |
7 | Length extension attack | Custom crypto code. Constructing SQL command string instead of SQL API. |
8 | Side channel attack | Password handling code. Timing attack mitigation too clever. |
More about each level in the future.
CGI for the IKEA catalog:
That couch catching your eye in the 2013 edition of IKEA’s new catalog may not be a couch at all. It is likely the entire living room was created by a graphic artist. In fact, much of the furniture and settings in the 324-page catalog are simply a collection of pixels and polygons arranged on a computer.
“tl;dr I just made a tool to transform any javascript code into an equivalent sequence of ()[]{}!+ characters. You can try it here, or grab it from github or npm. Keep on reading if you want to know how it works.”
JavaScript has some crazy implicit casts.
The U.S. Census Bureau today released a new online service that makes key demographic, socio-economic and housing statistics more accessible than ever before. The Census Bureau’s first-ever public Application Programming Interface (API) allows developers to design Web and mobile apps to explore or learn more about America’s changing population and economy.
One persons quest to watch the Olympics online.
The location requirements (guessed at via IP address) are irritating. The requirement that you have a particular cable subscription to view video online seems like not network neutrality.
Also this related article:
http://techcrunch.com/2012/07/27/nbc-olympic-opening-ceremony/