I've been working on the Glitch Helperator. It is a collection of tools and things I've put together for Glitch. It has a few features that I haven't seen elsewhere including:
One of the more limiting issues of writing client side script in the browser is the same origin limitations of XMLHttpRequest. The latest version of all browsers support a subset of CORS to allow servers to opt-in particular resources for cross-domain access. Since IE8 there's XDomainRequest and in all other browsers (including IE10) there's XHR L2's cross-origin request features. But the vast majority of resources out on the web do not opt-in using CORS headers and so client side only web apps like a podcast player or a feed reader aren't doable.
One hack-y way around this I've found is to use YQL as a CORS proxy. YQL applies the CORS header to all its responses and among its features it allows a caller to request an arbitrary XML, HTML, or JSON resource. So my network helper script first attempts to access a URI directly using XDomainRequest if that exists and XMLHttpRequest otherwise. If that fails it then tries to use XDR or XHR to access the URI via YQL. I wrap my URIs in the following manner, where type is either "html", "xml", or "json":
yqlRequest = function(uri, method, type, onComplete, onError) {
var yqlUri = "http://query.yahooapis.com/v1/public/yql?q=" +
encodeURIComponent("SELECT * FROM " + type + ' where url="' + encodeURIComponent(uri) + '"');
if (type == "html") {
yqlUri += encodeURIComponent(" and xpath='/*'");
}
else if (type == "json") {
yqlUri += "&callback=&format=json";
}
...
This
also means I can get JSON data itself without having to go through JSONP.
As a professional URI aficionado I deal with various levels of ignorance on URI percent-encoding (aka URI encoding, or URL escaping).
Getting into the more subtle levels of URI percent-encoding ignorance, folks try to apply their knowledge of percent-encoding to URIs as a whole producing the concepts escaped URIs and unescaped URIs. However there are no such things - URIs themselves aren't percent-encoded or decoded but rather contain characters that are percent-encoded or decoded. Applying percent-encoding or decoding to a URI as a whole produces a new and non-equivalent URI.
Instead of lingering on the incorrect concepts we'll just cover the correct ones: there's raw unencoded data, non-normal form URIs and normal form URIs. For example:
In the above (A) is not an 'encoded URI' but rather a non-normal form URI. The characters of 'the' and 'path' are percent-encoded but as unreserved characters specific in the RFC should not be encoded. In the normal form of the URI (B) the characters are decoded. But (B) is not a 'decoded URI' -- it still has an encoded '?' in it because that's a reserved character which by the RFC holds different meaning when appearing decoded versus encoded. Specifically in this case, it appears encoded which means it is data -- a literal '?' that appears as part of the path segment. This is as opposed to the decoded '?' that appears in the URI which is not part of the path but rather the delimiter to the query.
Usually when developers talk about decoding the URI what they really want is the raw data from the URI. The raw decoded data is (C) above. The only thing to note beyond what's covered already is that to obtain the decoded data one must parse the URI before percent decoding all percent-encoded octets.
Of course the exception here is when a URI is the raw data. In this case you must percent-encode the URI to have it appear in another URI. More on percent-encoding while constructing URIs later.
Most existing DRM attempts to only allow the user to access the DRM'ed content with particular applications or with particular credentials so that if the file is shared it won't be useful to others. A better solution is to encode any of the user's horrible secrets into unique versions of the DRM'ed content so that the user won't want to share it. Entangle the users and the content provider's secrets together in one document and accordingly their interests. I call this Blackmail DRM. For an implementation it is important to point out that the user's horrible secret doesn't need to be verified as accurate, but merely verified as believable.
Apparently I need to get these blog posts written faster because only recently I read about Social DRM which is a light weight version of my idea but with a misleading name. Instead of horrible secrets, they say they'll use personal information like the user's name in the DRM'ed content. More of my thoughts stolen and before I even had a chance to think of it first!
As a professional URI aficionado I deal with various levels of ignorance on URI percent-encoding (aka URI encoding, or URL escaping). The basest ignorance is with respect to the mere existence of percent-encoding. Percents in URIs are special: they always represent the start of a percent-encoded octet. That is to say, a percent is always followed by two hex digits that represents a value between 0 and 255 and doesn't show up in a URI otherwise.
The IPv6 textual syntax for scoped addresses uses the '%' to delimit the zone ID from the rest of the address. When it came time to define how to represent scoped IPv6 addresses in URIs there were two camps: Folks who wanted to use the IPv6 format as is in the URI, and those who wanted to encode or replace the '%' with a different character. The resulting thread was more lively than what shows up on the IETF URI discussion mailing list. Ultimately we went with a percent-encoded '%' which means the percent maintains its special status and singular purpose.
In short: excessive use of promises leads to a ton of short lived objects and resulting poorer pref.
Library of simple and lovely icons available in smaller form for free under CC BY.
There’s weird stuff you’d think is public domain but isn’t including Martin Luther King Jr.‘s “I Have a Dream” speech. FTA: ”If you want to watch the whole thing, legally, you’ll need to get the $20 DVD.
That’s because the King estate, and, as of 2009, the British music publishing conglomerate EMI Publishing, owns the copyright of the speech and its recorded performance.”
Fascinating anecdotes on criminal investigations involving game consoles.
Cool and (relatively) new methods on the JavaScript Array object are here in the most recent versions of your favorite browser! More about them on ECMAScript5, MSDN, the IE blog, or Mozilla's documentation. Here's the list that's got me excited:
A bug came up the other day involving markup containing <input type="image" src="http://example.com/...
. I knew that "image" was a valid input type but it wasn't until that moment
that I realized I didn't know what it did. Looking it up I found that it displays the specified image and when the user clicks on the image, the form is submitted with an additional two name
value pairs: the x and y positions of the point at which the user clicked the image.
Take for example the following HTML:
<form action="http://example.com/">
<input type="image" name="foo" src="http://deletethis.net/dave/images/davebefore.jpg">
</form>
If the user
clicks on the image, the browser will submit the form with a URI like the following:http://example.com/?foo.x=145&foo.y=124
.
This seemed like an incredibly specific feature to be built directly into the language when this could instead be done with javascript. I looked a bit further and saw that its been in HTML since at least HTML2, which of course makes much more sense. Javascript barely existed at that point and sending off the user's click location in a form may have been the only way to do something interesting with that action.
Describes forward HTTP headers to explicitly list proxying information that might otherwise be lost.
The Architecture of Access to Scientific Knowledge from lessig on Vimeo.