html page 4 - Dave's Blog

Search
My timeline on Mastodon

location.hash and location.search are bad and they should feel bad

2014 May 22, 9:25
The DOM location interface exposes the HTML document's URI parsed into its properties. However, it is ancient and has problems that bug me but otherwise rarely show up in the real world. Complaining about mostly theoretical issues is why blogging exists, so here goes:
  • The location object's search, hash, and protocol properties are all misnomers that lead to confusion about the correct terms:
    • The 'search' property returns the URI's query property. The query property isn't limited to containing search terms.
    • The 'hash' property returns the URI's fragment property. This one is just named after its delimiter. It should be called the fragment.
    • The 'protocol' property returns the URI's scheme property. A URI's scheme isn't necessarily a protocol. The http URI scheme of course uses the HTTP protocol, but the https URI scheme is the HTTP protocol over SSL/TLS - there is no HTTPS protocol. Similarly for something like mailto - there is no mailto wire protocol.
  • The 'hash' and 'search' location properties both return null in the case that their corresponding URI property doesn't exist or if its the empty string. A URI with no query property and a URI with an empty string query property that are otherwise the same, are not equal URIs and are allowed by HTTP to return different content. Similarly for the fragment. Unless the specific URI scheme defines otherwise, an empty query or hash isn't the same as no query or hash.
But like complaining about the number of minutes in an hour none of this can ever change without huge compat issues on the web. Accordingly I can only give my thanks to Anne van Kesteren and the awesome work on the URL standard moving towards a more sane (but still working practically within the constraints of compat) location object and URI parsing in the browser.
PermalinkComments

The Doritos origin story: Repurposed garbage from Disneyland

2014 May 6, 7:16

shortformblog:

A reminder that those Doritos you love are trash:

Shortly after Disneyland opened in 1955, the founder of Frito-Lay got permission from Walt Disney to open a restaurant in Frontierland with a Mexican-ish theme. “Casa de Fritos” was, unsurprisingly, all about the Fritos. Customers got free Fritos, and Fritos were incorporated into many of the dishes. Fritos were dispensed by an animatronic vending machine that featured the terrifying “Frito Kid”asking his assistant “Klondike” to bring the bag up from a mineshaft. I guess the conceit is that Fritos were mined by Forty-Niners?

Casa de Fritos contracted their tortilla production to a company called Alex Foods. One of the salesmen from Alex Foods, making a delivery to Casa de Fritos, noticed stale tortillas in the garbage and gave the cook a little tip: fry them and sell them as chips instead of throwing them away. Casa de Fritos began making these fried, seasoned chips to enormous success, but didn’t report this new menu item to the Frito-Lay company.

Eventually Frito-Lay found out what they were doing with the chips, packaged them, and sold them by the truckload. See, dumpster diving works out sometimes!

PermalinkComments

http://tools.ietf.org/html/draft-wkumari-not-a-draft-00

2014 Apr 14, 7:22
tp://tools.ietf.org/html/draft-wkumari-not-a-draft-00
PermalinkCommentshumor technical ietf atlanteans

JavaScript Promises: There and back again - HTML5 Rocks

2013 Dec 17, 9:02

The ES6 form of Promises.

PermalinkCommentstechnical javascript

FitBit and WebOC Application Compatibility Errors

2013 Aug 29, 7:17
I just got a FitBit One from my wife. Unfortunately I had issues running their app on my Windows 8.1 Preview machine. But I recognized the errors as IE compatibility issues, for instance an IE dialog popup from the FitBit app telling me about an error in the app's JavaScript. Given my previous post on WebOC versioning you may guess what I tried next. I went into the registry and tried out different browser mode and document mode versions until I got the FitBit software running without error. Ultimately I found the following registry value to work well ('FitBit connect.exe' set to DWORD decimal 8888).
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BROWSER_EMULATION]
"Fitbit Connect.exe"=dword:000022b8

For those familiar with the Windows registry the above should be enough. For those not familiar, copy and paste the above into notepad, save as a file named "fitbit.reg", and then double click the reg file and say 'Yes' to the prompt. Hopefully in the final release of Windows 8.1 this won't be an issue.
PermalinkComments

Pixel Perfect Timing Attacks with HTML5 - Context » Information Security

2013 Aug 7, 8:25PermalinkCommentssecurity html html5 svg javascript requestAnimationFrame iframe

Considerate MessagePort Usage

2013 Aug 7, 7:14
Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.When writing a JavaScript library that uses postMessage and the message event, I must be considerate of other JS code that will be running along side my library. I shouldn't assume I'm the only sender and receiver on a caller provided MessagePort object. This means obviously I should use addEventListener("message" rather than the onmessage property (see related What if two programs did this?). But considering the actual messages traveling over the message channel I have the issue of accidentally processing another libraries messages and having another library accidentally process my own message. I have a few options for playing nice in this regard:
Require a caller provided unique MessagePort
This solves the problem but puts a lot of work on the caller who may not notice nor follow this requirement.
Uniquely mark my messages
To ensure I'm acting upon my own messages and not messages that happen to have similar properties as my own, I place a 'type' property on my postMessage data with a value of a URN unique to me and my JS library. Usually because its easy I use a UUID URN. There's no way someone will coincidentally produce this same URN. With this I can be sure I'm not processing someone else's messages. Of course there's no way to modify my postMessage data to prevent another library from accidentally processing my messages as their own. I can only hope they take similar steps as this and see that my messages are not their own.
Use caller provided MessagePort only to upgrade to new unique MessagePort
I can also make my own unique MessagePort for which only my library will have the end points. This does still require the caller to provide an initial message channel over which I can communicate my new unique MessagePort which means I still have the problems above. However it clearly reduces the surface area of the problem since I only need once message to communicate the new MessagePort.
The best solution is likely all of the above.
Photo is Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.
PermalinkCommentsDOM html javascript messagechannel postMessage programming technical

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

Subtleties of postMessage

2013 Jul 15, 1:00

In IE10 and other new browsers one may create MessageChannel objects that have two MessagePorts each connected (w3c spec calls it entangled) to one another such that postMessage on one port results in the message event firing on the other. You can pass an array of ports as the last parameter to postMessage and they show up in the ports property of the message event arg.

Origin

The postMessage here is like the worker postMessage and unlike the window and iframe postMessage in that it applies no origin checking:

  1. No origin postMessage in workers and MessagePorts: postMessage(messageData, ports)
  2. Origin postMessage in windows and iframes: postMessage(messageData, targetOrigin, ports)

Unfortunately the origin isn't an optional parameter at the end to make the two postMessages have the same signature.

On the event handler side, the event arg always has an origin property. But in the no origin case it is always the empty string.

Source

There is also a source property on the message event arg which if set is an object that has a postMessage property allowing you to post back to your caller. It is set for the origin case, however, in the no origin case this property is null. This is somewhat reasonable because in the case of MessagePort and Workers there are only two endpoints so you always know the source of a message implicitly. Unlike the origin case in which any iframe or window can be calling postMessage on any other iframe or window and the caller is unknown. So not unreasonable but it would be nice if the source property was always set for consistency.

MessageChannel start

When a MessageChannel is created it has two MessagePorts, but until those ports are started they will queue up any messages they receive. Once started they will dispatch all queued messages. Ports don't have to be started to send messages.

A port may be started in two ways, either by explicitly calling the start method on the port, or by setting the onmessage callback property on the port. However, adding an event listener via addEventListener("message", does not start the port. It works this way in IE and Chrome and the spec states this as well.

The justification is that since you can have only one callback via onmessage that once set you must implicitly be ready to receive messages and its fine to start the port. As opposed to the addEventListener in which case the user agent cannot start implicitly because it doesn't know how many event listeners will be added.  I found Hixie stating this justification in geoloc meeting notes.

Links

W3C Spec

Opera introduction

PermalinkCommentsDOM html javascript postMessage technical web-worker worker

Percent Clcok Windows Store App Development Notes

2013 Jul 11, 1:00

My third completed Windows Store app is Percent Clock which displays portions of a time span like the time of the day or time until your next birthday, as a percentage. This was a small project I had previously started as a webpage and converted and finished as an HTML JavaScript Windows Store app.

The only somewhat interesting aspect of this app is that its the first app for which I tried charging. I picked the minimum amount for price 1.49 USD as it is a simple app and unsurprisingly it has sold very poorly. I'm considering releasing new instances of the app for specific scenarios:

  • Death Clock: viewing your current age with respect to your life expectancy as a percentage.
  • New Year Countdown: percentage of the year until New Years.
PermalinkCommentsdevelopment javascript technical windows windows-store

Shout Text Windows 8 App Development Notes

2013 Jun 27, 1:00

My first app for Windows 8 was Shout Text. You type into Shout Text, and your text is scaled up as large as possible while still fitting on the screen, as you type. It is the closest thing to a Hello World app as you'll find on the Windows Store that doesn't contain that phrase (by default) and I approached it as the simplest app I could make to learn about Windows modern app development and Windows Store app submission.

I rely on WinJS's default layout to use CSS transforms to scale up the user's text as they type. And they are typing into a simple content editable div.

The app was too simple for me to even consider using ads or charging for it which I learned more about in future apps.

The first interesting issue I ran into was that copying from and then pasting into the content editable div resulted in duplicates of the containing div with copied CSS appearing recursively inside of the content editable div. To fix this I had to catch the paste operation and remove the HTML data from the clipboard to ensure only the plain text data is pasted:

        function onPaste() {
var text;

if (window.clipboardData) {
text = window.clipboardData.getData("Text").toString();
window.clipboardData.clearData("Html");
window.clipboardData.setData("Text", util.normalizeContentEditableText(text));
}
}
shoutText.addEventListener("beforepaste", function () { return false; }, false);
shoutText.addEventListener("paste", onPaste, false);

I additionally found an issue in IE in which applying a CSS transform to a content editable div that has focus doesn't move the screen position of the user input caret - the text is scaled up or down but the caret remains the same size and in the same place on the screen. To fix this I made the following hack to reapply the current cursor position and text selection which resets the screen position of the user input caret.

        function resetCaret() {
setTimeout(function () {
var cursorPos = document.selection.createRange().duplicate();
cursorPos.select();
}, 200);
}

shoutText.attachEvent("onresize", function () { resetCaret(); }, true);
PermalinkCommentsdevelopment html javascript shout-text technical windows windows-store

Sci-fi short stories disguised as Internet docs

2013 May 29, 2:48
The recent short story Twitter API returning results that do not respect arrow of time by Tim May written as a Twitter bug report reminded me of a few other short sci-fi stories written in the style of some sort of Internet document:
PermalinkCommentscsc fiction sci-fi Scifi time-travel twitter

Will Arnett Explains the Origins of His Arrested Development Chicken Dance

2013 May 8, 11:26

thebluthcompany:

To decide what Gob’s bad impression of a chicken might be, Arnett consulted on set in 2003 with series executive producers Mitch Hurwitz and James Vallely. They all tried out different versions for each other. “Jimmy started doing a little bit, then Mitch got up and did some, and then I began trying things,” remembers Arnett. “Picture three grown men hopping around, working out what it would be … They were pitching this really taunting dance, but I wanted to give it this very sharp, almost roosterlike, chest-sticking-out mannerism, like a real macho bravado dance.” And how did clapping get introduced to the move? “Because I wanted it to be only sort of threatening.”

Read More | Vulture

PermalinkCommentshumor chicken chicken-dance arrested-development

draft-ietf-websec-framework-reqs-00 - Web Security Framework: Problem Statement and Requirements

2013 Feb 20, 2:48

Web Security Framework: Problem Statement and Requirements

PermalinkCommentstechnical rfc security web html

(via Real Myst “linking book”)

2012 Oct 30, 1:33


(via Real Myst “linking book”)

PermalinkCommentsgame humor video-game link book myst

DSL modem hack used to infect millions with banking fraud malware | Ars Technica

2012 Oct 1, 6:33

According to the links within this article, although the root URI of the router requires authentication, the /password.cgi URI doesn’t and the resulting returned HTML contains (but does not display) the plaintext of the password, as well as an HTML FORM to modify the password that is exploitable by CSRF.

The attack… infected more than 4.5 million DSL modems… The CSRF (cross-site request forgery) vulnerability allowed attackers to use a simple script to steal passwords required to remotely log in to and control the devices. The attackers then configured the modems to use malicious domain name system servers that caused users trying to visit popular websites to instead connect to booby-trapped imposter sites.

PermalinkCommentstechnical security html router web dns csrf

laughingsquid: Amp Tee, A Geeky T-Shirt Bringing Together Music...

2012 Sep 18, 2:37


laughingsquid:

Amp Tee, A Geeky T-Shirt Bringing Together Music And HTML Code

PermalinkCommentshumor html ampersand amp shirt t-shirt

Stripe CTF - Level 7

2012 Sep 13, 5:00

Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.

Code

@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)

...

def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])

h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True

Issue

The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.

However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.

count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.

Notes

Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.

PermalinkCommentshash internet length-extension security sha1 stripe-ctf technical web

Stripe CTF - Level 5

2012 Sep 11, 5:00

Level 5 of the Stripe CTF revolved around a design issue in an OpenID like protocol.

Code

    def authenticated?(body)
body =~ /[^\w]AUTHENTICATED[^\w]*$/
end

...

if authenticated?(body)
session[:auth_user] = username
session[:auth_host] = host
return "Remote server responded with: #{body}." \
" Authenticated as #{username}@#{host}!"

Issue

This level is an implementation of a federated identity protocol. You give it an endpoint URI and a username and password, it posts the username and password to the endpoint URI, and if the response is 'AUTHENTICATED' then access is allowed. It is easy to be authenticated on a server you control, but this level requires you to authenticate from the server running the level. This level only talks to stripe CTF servers so the first step is to upload a document to the level 2 server containing the text 'AUTHENTICATED' and we can now authenticate on a level 2 server. Notice that the level 5 server will dump out the content of the endpoint URI and that the regexp it uses to detect the text 'AUTHENTICATED' can match on that dump. Accordingly I uploaded an authenticated file to

https://level02-2.stripe-ctf.com/user-ajvivlehdt/uploads/authenticated
Using that as my endpoint URI means authenticating as level 2. I can then choose the following endpoint URI to authenticate as level 5.
https://level05-1.stripe-ctf.com/user-qtoyekwrod/?pingback=https%3A%2F%2Flevel02-2.stripe-ctf.com%2Fuser-ajvivlehdt%2Fuploads%2Fauthenticated&username=a&password=a
Navigating to that URI results in the level 5 server telling me I'm authenticated as level 2 and lists the text of the level 2 file 'AUTHENTICATED'. Feeding this back into the level 5 server as my endpoint URI means level 5 seeing 'AUTHENTICATED' coming back from a level 5 URI.

Notes

I didn't see any particular code review red flags, really the issue here is that the regular expression testing for 'AUTHENTICATED' is too permisive and the protocol itself doesn't do enough. The protocol requires only a set piece of common literal text to be returned which makes it easy for a server to accidentally fall into authenticating. Having the endpoint URI have to return variable text based on the input would make it much harder for a server to accidentally authenticate.

PermalinkCommentsinternet openid security stripe-ctf technical web

Stripe CTF - XSS, CSRF (Levels 4 & 6)

2012 Sep 10, 4:43

Level 4 and level 6 of the Stripe CTF had solutions around XSS.

Level 4

Code

> Registered Users 

    <%@registered_users.each do |user| %>
    <%last_active = user[:last_active].strftime('%H:%M:%S UTC') %>
    <%if @trusts_me.include?(user[:username]) %>

  • <%= user[:username] %>
    (password: <%= user[:password] %>, last active <%= last_active %>)
  • Issue

    The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:

    
    
    This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's password.

    Notes

    Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.

    Level 6

    Code

    
    

    ...

    def self.safe_insert(table, key_values)
    key_values.each do |key, value|
    # Just in case people try to exfiltrate
    # level07-password-holder's password
    if value.kind_of?(String) &&
    (value.include?('"') || value.include?("'"))
    raise "Value has unsafe characters"
    end
    end

    conn[table].insert(key_values)
    end

    Issue

    This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:

    
    
    
    
PermalinkCommentscsrf encoding html internet javascript percent-encoding script security stripe-ctf technical web xss
Older EntriesNewer Entries Creative Commons License Some rights reserved.