val page 4 - Dave's Blog

Search
My timeline on Mastodon

Tweet from Kumail Nanjiani

2016 Apr 5, 11:22
Terrified that the will reveal I never beat Dragon Age: Inquisition.
PermalinkComments

Retweet of Ghostbusters

2016 Feb 11, 11:08
Whether you have a date or not, the world ends on Valentine's Day. Bummer. #Ghostbusters
PermalinkComments

Cdb/Windbg Commands for Runtime Patching

2016 Feb 8, 1:47

You can use conditional breakpoints and debugging commands in windbg and cdb that together can amount to effectively patching a binary at runtime. This can be useful if you have symbols but you can't easily rebuild the binary. Or if the patch is small and the binary requires a great deal of time to rebuild.

Skipping code

If you want to skip a chunk of code you can set a breakpoint at the start address of the code to skip and set the breakpoint's command to change the instruction pointer register to point to the address at the end of the code to skip and go. Voila you're skipping over that code now. For example:

bp 0x6dd6879b "r @eip=0x6dd687c3 ; g"

Changing parameters

You may want to modify parameters or variables and this is simple of course. In the following example a conditional breakpoint ANDs out a bit from dwFlags. Now when we run its as if no one is passing in that flag.

bp wiwi!RelativeCrack "?? dwFlags &= 0xFDFFFFFF;g"

Slightly more difficult is to modify string values. If the new string length is the same size or smaller than the previous, you may be able to modify the string value in place. But if the string is longer or the string memory isn't writable, you'll need a new chunk of memory into which to write your new string. You can use .dvalloc to allocate some memory and ezu to write a string into the newly allocated memory. In the following example I then overwrite the register containing the parameter I want to modify:

.dvalloc 100
ezu 000002a9`d4eb0000 "mfcore.dll"
r rcx = 000002a9`d4eb0000

Calling functions

You can also use .call to actually make new calls to methods or functions. Read more about that on the Old New Thing: Stupid debugger tricks: Calling functions and methods. Again, all of this can be used in a breakpoint command to effectively patch a binary.

PermalinkCommentscdb debug technical windbg

Let's Encrypt NearlyFreeSpeech.net Setup

2016 Feb 4, 2:48

2016-Nov-5: Updated post on using Let's Encrypt with NearlyFreeSpeech.net

I use NearlyFreeSpeech.net for my webhosting for my personal website and I've just finished setting up TLS via Let's Encrypt. The process was slightly more complicated than what you'd like from Let's Encrypt. So for those interested in doing the same on NearlyFreeSpeech.net, I've taken the following notes.

The standard Let's Encrypt client requires su/sudo access which is not available on NearlyFreeSpeech.net's servers. Additionally NFSN's webserver doesn't have any Let's Encrypt plugins installed. So I used the Let's Encrypt Without Sudo client. I followed the instructions listed on the tool's page with the addition of providing the "--file-based" parameter to sign_csr.py.

One thing the script doesn't produce is the chain file. But this topic "Let's Encrypt - Quick HOWTO for NSFN" covers how to obtain that:

curl -o domain.chn https://letsencrypt.org/certs/lets-encrypt-x1-cross-signed.pem

Now that you have all the required files, on your NFSN server make the directory /home/protected/ssl and copy your files into it. This is described in the NFSN topic provide certificates to NFSN. After copying the files and setting their permissions as described in the previous link you submit an assistance request. For me it was only 15 minutes later that everything was setup.

After enabling HTTPS I wanted to have all HTTP requests redirect to HTTPS. The normal Apache documentation on how to do this doesn't work on NFSN servers. Instead the NFSN FAQ describes it in "redirect http to https and HSTS". You use the X-Forwarded-Proto instead of the HTTPS variable because of how NFSN's virtual hosting is setup.

RewriteEngine on
RewriteCond %{HTTP:X-Forwarded-Proto} !https
RewriteRule ^.*$ https://%{SERVER_NAME}%{REQUEST_URI} [L,R=301]

Turning on HSTS is as simple as adding the HSTS HTTP header. However, the description in the above link didn't work because my site's NFSN realm isn't on the latest Apache yet. Instead I added the following to my .htaccess. After I'm comfortable with everything working well for a few days I'll start turning up the max-age to the recommended minimum value of 180 days.

Header set Strict-Transport-Security "max-age=3600;" 

Finally, to turn on CSP I started up Fiddler with my CSP Fiddler extension. It allows me to determine the most restrictive CSP rules I could apply and still have all resources on my page load. From there I found and removed inline script and some content loaded via http and otherwise continued tweaking my site and CSP rules.

After I was done I checked out my site on SSL Lab's SSL Test to see what I might have done wrong or needed improving. The first time I went through these steps I hadn't included the chain file which the SSL Test told me about. I was able to add that file to the same files I had already previously generated from the Let's Encrypt client and do another NFSN assistance request and 15 minutes later the SSL Test had upgraded me from 'B' to 'A'.

PermalinkCommentscertificate csp hsts https lets-encrypt nearlyfreespeech.net

Tweet from David_Risney

2016 Jan 27, 9:57
FCC proposes replacing cable card with software based equivalent. Would be amazing if it could happen. http://arstechnica.com/business/2016/01/cable-lobby-is-really-mad-about-fccs-set-top-box-competition-plan/ …
PermalinkComments

Unicode Clock

2016 Jan 24, 2:00

I've made a Unicode Clock in JavaScript.

Unicode has code points for all 30 minute increments of clock faces. This is a simple project to display the one closest to the current time written in JavaScript.

Because the code points are all above 0xFFFF, I make use of some ES6 additions. I use the \u{XXXXXX} style escape sequence since the old style JavaScript escape sequence \uXXXX only supports code points up to 0xFFFF. I also use the method String.codePointAt rather than String.charCodeAt because the code points larger than 0xFFFF are represented in JavaScript strings using surrogate pairs and charCodeAt gives the surrogate value rather than codePointAt which gives the code point represented by the pair of surrogates.

"🕛".codePointAt(0)
128347
"🕛".charCodeAt(0)
55357

🕐🕑🕒🕓🕔🕕🕖🕗🕘🕙🕚🕛🕜🕝🕞🕟🕠🕡🕢🕣🕤🕥🕦🕧

The ordering of the code points does not make it simple to do this. I initially guessed the first code point in the range would be 12:00 followed by 12:30, 1:00 and so on. But actually 1:00 is first followed by all the on the hour times then all the half hour times.

PermalinkCommentsjavascript Unicode

JavaScript Types and WinRT Types

2016 Jan 21, 5:35

MSDN covers the topic of JavaScript and WinRT type conversions provided by Chakra (JavaScript Representation of Windows Runtime Types and Considerations when Using the Windows Runtime API), but for the questions I get about it I’ll try to lay out some specifics of that discussion more plainly. I’ve made a TL;DR JavaScript types and WinRT types summary table.

WinRT Conversion JavaScript
Struct ↔️ JavaScript object with matching property names
Class or interface instance JavaScript object with matching property names
Windows.Foundation.Collections.IPropertySet JavaScript object with arbitrary property names
Any DOM object

Chakra, the JavaScript engine powering the Edge browser and JavaScript Windows Store apps, does the work to project WinRT into JavaScript. It is responsible for, among other things, converting back and forth between JavaScript types and WinRT types. Some basics are intuitive, like a JavaScript string is converted back and forth with WinRT’s string representation. For other basic types check out the MSDN links at the top of the page. For structs, interface instances, class instances, and objects things are more complicated.

A struct, class instance, or interface instance in WinRT is projected into JavaScript as a JavaScript object with corresponding property names and values. This JavaScript object representation of a WinRT type can be passed into other WinRT APIs that take the same underlying type as a parameter. This JavaScript object is special in that Chakra keeps a reference to the underlying WinRT object and so it can be reused with other WinRT APIs.

However, if you start with plain JavaScript objects and want to interact with WinRT APIs that take non-basic WinRT types, your options are less plentiful. You can use a plain JavaScript object as a WinRT struct, so long as the property names on the JavaScript object match the WinRT struct’s. Chakra will implicitly create an instance of the WinRT struct for you when you call a WinRT method that takes that WinRT struct as a parameter and fill in the WinRT struct’s values with the values from the corresponding properties on your JavaScript object.

// C# WinRT component
public struct ExampleStruct
{
public string String;
public int Int;
}

public sealed class ExampleStructContainer
{
ExampleStruct value;
public void Set(ExampleStruct value)
{
this.value = value;
}

public ExampleStruct Get()
{
return this.value;
}
}

// JS code
var structContainer = new ExampleWinRTComponent.ExampleNamespace.ExampleStructContainer();
structContainer.set({ string: "abc", int: 123 });
console.log("structContainer.get(): " + JSON.stringify(structContainer.get()));
// structContainer.get(): {"string":"abc","int":123}

You cannot have a plain JavaScript object and use it as a WinRT class instance or WinRT interface instance. Chakra does not provide such a conversion even with ES6 classes.

You cannot take a JavaScript object with arbitrary property names that are unknown at compile time and don’t correspond to a specific WinRT struct and pass that into a WinRT method. If you need to do this, you have to write additional JavaScript code to explicitly convert your arbitrary JavaScript object into an array of property name and value pairs or something else that could be represented in WinRT.

However, the other direction you can do. An instance of a Windows.Foundation.Collections.IPropertySet implementation in WinRT is projected into JavaScript as a JavaScript object with property names and values corresponding to the key and value pairs in the IPropertySet. In this way you can project a WinRT object as a JavaScript object with arbitrary property names and types. But again, the reverse is not possible. Chakra will not convert an arbitrary JavaScript object into an IPropertySet.

// C# WinRT component
public sealed class PropertySetContainer
{
private Windows.Foundation.Collections.IPropertySet otherValue = null;

public Windows.Foundation.Collections.IPropertySet other
{
get
{
return otherValue;
}
set
{
otherValue = value;
}
}
}

public sealed class PropertySet : Windows.Foundation.Collections.IPropertySet
{
private IDictionary map = new Dictionary();

public PropertySet()
{
map.Add("abc", "def");
map.Add("ghi", "jkl");
map.Add("mno", "pqr");
}
// ... rest of PropertySet implementation is simple wrapper around the map member.


// JS code
var propertySet = new ExampleWinRTComponent.ExampleNamespace.PropertySet();
console.log("propertySet: " + JSON.stringify(propertySet));
// propertySet: {"abc":"def","ghi":"jkl","mno":"pqr"}

var propertySetContainer = new ExampleWinRTComponent.ExampleNamespace.PropertySetContainer();
propertySetContainer.other = propertySet;
console.log("propertySetContainer.other: " + JSON.stringify(propertySetContainer.other));
// propertySetContainer.other: {"abc":"def","ghi":"jkl","mno":"pqr"}

try {
propertySetContainer.other = { "123": "456", "789": "012" };
}
catch (e) {
console.error("Error setting propertySetContainer.other: " + e);
// Error setting propertySetContainer.other: TypeError: Type mismatch
}

There’s also no way to implicitly convert a DOM object into a WinRT type. If you want to write third party WinRT code that interacts with the DOM, you must do so indirectly and explicitly in JavaScript code that is interacting with your third party WinRT. You’ll have to extract the information you want from your DOM objects to pass into WinRT methods and similarly have to pass messages out from WinRT that say what actions the JavaScript should perform on the DOM.

PermalinkCommentschakra development javascript winrt

Retweet of TipoTipos

2016 Jan 4, 12:12
Someday, someone will think deeply about the use value of social media and invent something better. It will be called RSS.
PermalinkComments

Tweet from David_Risney

2016 Jan 3, 10:28
CSP report gripe: no distinction between violation of unsafe-eval and unsafe-inline. I use 2 hdrs w diff rules & report URIs to distinguish.
PermalinkComments

Retweet of blubbfiction

2015 Dec 12, 6:22
Replay attacks against HTTPS - http://blog.valverde.me/2015/12/07/bad-life-advice/#.Vm2ATTAxldZ …
PermalinkComments

Retweet of jvaleski

2015 Nov 9, 2:38
Just had "the talk" w/ my daughter; complete w/ diagram. Everyone needs to know how this all works. #thenetwork pic.twitter.com/4vOV4d6XfY
PermalinkComments

Tweet from David_Risney

2015 Apr 9, 9:30
If only we had some mechanism to validate the integrity of http sessions. https://twitter.com/dangoodin001/status/586568133038579712 …
PermalinkComments

Retweet of latest_is

2015 Mar 1, 3:08
Why Silicon Valley has a chance to dominate the auto industry - Vox http://www.vox.com/2015/2/23/8092141/silicon-valley-dominate-cars …
PermalinkComments

Gamers Messed With The Steam Sale, Then Valve Changed The Rules

2014 Jun 24, 3:51

Applied game theory 101: Valve’s Steam Summer Sale involves a meta game with teams of Steam users competing for daily prizes. On Reddit the players join together to take turns winning daily. Valve gets wise and performs an existential attack, changing the rules to make it harder for players to want to coordinate.

Still, that all the players joined together to game the system gives me hope for humanity. Its a self organized solution to a tragedy of the commons problem. Only in this case the tragedy is by design and is updated to be more tragic.

PermalinkCommentsgame video-game game-theory valve

Debugging anecdote - the color transparent black breaks accessibility

2014 May 22, 10:36

Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.

I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.

My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.

Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.

Only some calls to the AppBar WinRT object produced the issue:

        var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView(); 
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.

I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0} to make a color) and I had been mixing both in my tests without realizing there would be a difference. I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0} and found the two structs to be byte wise exactly the same.

On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color: Windows.UI.Colors.black;. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make sense again.

Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.

I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.

At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.

PermalinkCommentsbug debug javascript JS technical windows winrt

FitBit and WebOC Application Compatibility Errors

2013 Aug 29, 7:17
I just got a FitBit One from my wife. Unfortunately I had issues running their app on my Windows 8.1 Preview machine. But I recognized the errors as IE compatibility issues, for instance an IE dialog popup from the FitBit app telling me about an error in the app's JavaScript. Given my previous post on WebOC versioning you may guess what I tried next. I went into the registry and tried out different browser mode and document mode versions until I got the FitBit software running without error. Ultimately I found the following registry value to work well ('FitBit connect.exe' set to DWORD decimal 8888).
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BROWSER_EMULATION]
"Fitbit Connect.exe"=dword:000022b8

For those familiar with the Windows registry the above should be enough. For those not familiar, copy and paste the above into notepad, save as a file named "fitbit.reg", and then double click the reg file and say 'Yes' to the prompt. Hopefully in the final release of Windows 8.1 this won't be an issue.
PermalinkComments

Considerate MessagePort Usage

2013 Aug 7, 7:14
Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.When writing a JavaScript library that uses postMessage and the message event, I must be considerate of other JS code that will be running along side my library. I shouldn't assume I'm the only sender and receiver on a caller provided MessagePort object. This means obviously I should use addEventListener("message" rather than the onmessage property (see related What if two programs did this?). But considering the actual messages traveling over the message channel I have the issue of accidentally processing another libraries messages and having another library accidentally process my own message. I have a few options for playing nice in this regard:
Require a caller provided unique MessagePort
This solves the problem but puts a lot of work on the caller who may not notice nor follow this requirement.
Uniquely mark my messages
To ensure I'm acting upon my own messages and not messages that happen to have similar properties as my own, I place a 'type' property on my postMessage data with a value of a URN unique to me and my JS library. Usually because its easy I use a UUID URN. There's no way someone will coincidentally produce this same URN. With this I can be sure I'm not processing someone else's messages. Of course there's no way to modify my postMessage data to prevent another library from accidentally processing my messages as their own. I can only hope they take similar steps as this and see that my messages are not their own.
Use caller provided MessagePort only to upgrade to new unique MessagePort
I can also make my own unique MessagePort for which only my library will have the end points. This does still require the caller to provide an initial message channel over which I can communicate my new unique MessagePort which means I still have the problems above. However it clearly reduces the surface area of the problem since I only need once message to communicate the new MessagePort.
The best solution is likely all of the above.
Photo is Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.
PermalinkCommentsDOM html javascript messagechannel postMessage programming technical

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

WinRT PropertySet Changed Event Danger

2013 Jul 8, 1:46

The Windows Runtime API Windows.Foundation.Collections.PropertySet class​ is a nice string name to object value map that has a changed event that fires when the contents of the map is modified. Be careful with this event because it fires synchronously from the thread on which the PropertySet was modified. If modified from the UI thread, the UI thread will then wait as it synchronously dispatches the changed event to all listeners which could lead to performance issues or especially from the UI thread deadlock. For instance, deadlock if you have two threads both trying to tell each other about changed events for different PropertySets.

PermalinkCommentsdeadlock development propertyset windows windows-runtime winrt

MSVC++ 64bit Enums

2013 Jul 1, 1:00

If you want to represent a value larger than 32bits in an enum in MSVC++ you can use C++0x style syntax to tell the compiler exactly what kind of integral type to store the enum values. Unfortunately by default an enum is always 32bits, and additionally while you can specify constants larger than 32bits for the enum values, they are silently truncated to 32bits.

For instance the following doesn't compile because Lorem::a and Lorem::b have the same value of '1':


enum Lorem {
a = 0x1,
b = 0x100000001
} val;

switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}

Unfortunately it is not an error to have b's constant truncated, and the previous without the switch statement does compile just fine:


enum Lorem {
a = 0x1,
b = 0x100000001
} val;

But you can explicitly specify that the enum should be represented by a 64bit value and get expected compiling behavior with the following:


enum Lorem : UINT64 {
a = 0x1,
b = 0x100000001
} val;

switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}
PermalinkComments64bit c++ development enum msvc++ technical
Older EntriesNewer Entries Creative Commons License Some rights reserved.