As a professional URI aficionado I deal with various levels of ignorance on URI percent-encoding (aka URI encoding, or URL escaping).
Getting into the more subtle levels of URI percent-encoding ignorance, folks try to apply their knowledge of percent-encoding to URIs as a whole producing the concepts escaped URIs and unescaped URIs. However there are no such things - URIs themselves aren't percent-encoded or decoded but rather contain characters that are percent-encoded or decoded. Applying percent-encoding or decoding to a URI as a whole produces a new and non-equivalent URI.
Instead of lingering on the incorrect concepts we'll just cover the correct ones: there's raw unencoded data, non-normal form URIs and normal form URIs. For example:
In the above (A) is not an 'encoded URI' but rather a non-normal form URI. The characters of 'the' and 'path' are percent-encoded but as unreserved characters specific in the RFC should not be encoded. In the normal form of the URI (B) the characters are decoded. But (B) is not a 'decoded URI' -- it still has an encoded '?' in it because that's a reserved character which by the RFC holds different meaning when appearing decoded versus encoded. Specifically in this case, it appears encoded which means it is data -- a literal '?' that appears as part of the path segment. This is as opposed to the decoded '?' that appears in the URI which is not part of the path but rather the delimiter to the query.
Usually when developers talk about decoding the URI what they really want is the raw data from the URI. The raw decoded data is (C) above. The only thing to note beyond what's covered already is that to obtain the decoded data one must parse the URI before percent decoding all percent-encoded octets.
Of course the exception here is when a URI is the raw data. In this case you must percent-encode the URI to have it appear in another URI. More on percent-encoding while constructing URIs later.
Sarah and I have been enjoying Glitch for a while now. Reviews are usually positive although occasionally biting (but mostly accurate).
I enjoy Glitch as a game of exploration: exploring the game's lands with hidden and secret rooms, and exploring the games skills and game mechanics. The issue with my enjoyment coming from exploration is that after I've explored all streets and learned all skills I've got nothing left to do. But I've found that even after that I can have fun writing client side JavaScript against Glitch's web APIs making tools (I work on the Glitch Helperator) for use in Glitch. And on a semi-regular basis they add new features reviving my interest in the game itself.
As a professional URI aficionado I deal with various levels of ignorance on URI percent-encoding (aka URI encoding, or URL escaping).
Worse than the lame blog comments hating on percent-encoding is the shipping code which can do actual damage. In one very large project I won't name, I've fixed code that decodes all percent-encoded octets in a URI in order to get rid of pesky percents before calling ShellExecute. An unnamed developer with similar intent but clearly much craftier did the same thing in a loop until the string's length stopped changing. As it turns out percent-encoding serves a purpose and can't just be removed arbitrarily.
Percent-encoding exists so that one can represent data in a URI that would otherwise not be allowed or would be interpretted as a delimiter instead of data. For example, the space character (U+0020) is not allowed in a URI and so must be percent-encoded in order to appear in a URI:
http://example.com/the%20path/
http://example.com/the path/
For an additional example, the question mark delimits the path from the query. If one wanted the question mark to appear as part of the path rather than delimit the path from the query, it must be percent-encoded:
http://example.com/foo%3Fbar
http://example.com/foo?bar
/foo
" from the query "bar
". And in the first, the querstion mark is percent-encoded and so
the path is "/foo%3Fbar
".
Some backhanded compliments towards the end =). Exciting regardless.
Cool and (relatively) new methods on the JavaScript Array object are here in the most recent versions of your favorite browser! More about them on ECMAScript5, MSDN, the IE blog, or Mozilla's documentation. Here's the list that's got me excited:
I used FiddlerCore in GeolocMock to edit HTTPS responses and ran into two stumbling blocks that I'll document here. The first is that I didn't check if the Fiddler root cert existed or was installed, which of course is necessary to edit HTTPS traffic. The following is my code where I check for the certs.
if (!Fiddler.CertMaker.rootCertExists())
{
if (!Fiddler.CertMaker.createRootCert())
{
throw new Exception("Unable to create cert for FiddlerCore.");
}
}
if (!Fiddler.CertMaker.rootCertIsTrusted())
{
if (!Fiddler.CertMaker.trustRootCert())
{
throw new Exception("Unable to install FiddlerCore's cert.");
}
}
The second problem I had (which would have been solved had I read all the sample code first) was that my changes weren't being applied. In my app I only need the BeforeResponse but in order to modify the response I must also sign up for the BeforeRequest event and mark the bBufferResponse flag on the session before the response comes back. For example:
Fiddler.FiddlerApplication.BeforeRequest += new SessionStateHandler(FiddlerApplication_BeforeRequest);
Fiddler.FiddlerApplication.BeforeResponse += new SessionStateHandler(FiddlerApplication_BeforeResponse);
...
private void FiddlerApplication_BeforeRequest(Session oSession)
{
if (IsInterestingSession(oSession))
{
oSession.bBufferResponse = true;
}
}
For my GeolocMock weekend project I intended to use the Bing Maps API to display a map in a WebBrowser control and allow the user to interact with that to select a location to be consumed by my application. Getting my .NET code to talk to the JavaScript in the WebBrowser control was surprisingly easy.
To have .NET execute JavaScript code you can use the InvokeScript method passing the name of the JavaScript function to execute and an object array of parameters to pass:
this.webBrowser2.Document.InvokeScript("onLocationStateChanged",
new object[] {
latitudeTextBoxText,
longitudeTextBoxText,
altitudeTextBoxText,
uncertaintyTextBoxText
});
The other direction, having JavaScript call into .NET is slightly more complicated but still pretty easy as far as language interop goes. The first step is to mark your assembly as ComVisible so that it can interact with JavaScript via COM. VS had already added a ComVisible declaration to my project I just had to change the value to true.
[assembly: ComVisible(true)]
Next set ObjectForScripting attribute to the object you want to expose to JavaScript.
this.webBrowser2.ObjectForScripting = this.locationState;
Now that object is exposed as window.external in JavaScript and you can call methods on it.
window.external.Set(lat, long, alt, gUncert);
However you don't seem to be able to test for the existence of methods off of it. For example the following JavaScript generates an exception for me even though I have a Set method:
if (window.external && window.external.Set) {
Working on GeolocMock it took me a bit to realize why my HTML could use the W3C Geolocation API in IE9 but not in my WebBrowser control in my .NET application. Eventually I realized that I was getting the wrong IE doc mode. Reading this old More IE8 Extensibility Improvements IE blog post from the IE blog I found the issue is that for app compat the WebOC picks older doc modes but an app hosting the WebOC can set a regkey to get different doc modes. The IE9 mode isn't listed in that article but I took a guess based on the values there and the decimal value 9999 gets my app IE9 mode. The following is the code I run in my application to set its regkey so that my app can get the IE9 doc mode and use the geolocation API.
static private void UseIE9DocMode()
{
RegistryKey key = null;
try
{
key = Registry.CurrentUser.OpenSubKey("Software\\Microsoft\\Internet Explorer\\Main\\FeatureControl\\FEATURE_BROWSER_EMULATION", true);
}
catch (Exception)
{
key = Registry.CurrentUser.CreateSubKey("Software\\Microsoft\\Internet Explorer\\Main\\FeatureControl\\FEATURE_BROWSER_EMULATION");
}
key.SetValue(System.Diagnostics.Process.GetCurrentProcess().MainModule.ModuleName, 9999, RegistryValueKind.DWord);
key.Close();
}
I've made GeolocMock. If your PC has no geolocation devices, IE9 uses a webservice to determine your location. GeolocMock uses FiddlerCore to intercept the response from the webservice and allows the user to replace the location in the response with another. This was a fun weekend project in order to play with FiddlerCore, the W3C Geoloc APIs in IE9, hosting the IE9 WebOC in a .NET app, and the Bing Maps APIs.