Microsoft isn't completely shielded from our economies issues but I still have a job and still get free soda. While that's all still the case, I decided to test Sarah's claimed ability to differentiate between Pepsi, Coke, and their diet counterparts by taste alone. I poured the four sodas into marked cups and Sarah and I each took two runs through the cups with the following guesses.
Drink | Sarah | Dave | ||
---|---|---|---|---|
Guess 1 | Guess 2 | Guess 1 | Guess 2 | |
Coke | Coke | Coke | Pepsi | Diet Pepsi |
Diet Coke | Diet Coke | Diet Pepsi | Diet Coke | Diet Coke |
Pepsi | Pepsi | Pepsi | Coke | Coke |
Diet Pepsi | Diet Pepsi | Diet Coke | Diet Pepsi | Pepsi |
Total (out of 8) | 6 | 3 |
As you can see from the results, Sarah's claimed ability to identify Coke and Pepsi by taste is confirmed. The first run through she got completely correct and on the second run only mistook Diet Pepsi for Diet Coke. Her excuse for the error on the second run was a tainted palate from the first run. I on the other hand was mostly incorrect. Surprisingly though my incorrect answers were mostly consistent between run one and two. For instance I thought Pepsi was Coke in both runs.
Another use for my new phone is as a replacement for my grocery card, those little plastic cards with a bar code on them that the grocery store gives you to track your purchasing habits. I've previously gone to great lengths to increase space in my pockets by removing infrequently used keys and reducing my wallet to the essentials. So I was glad to get rid of the QFC card and replace it with a photo of its bar code on my phone. Since the important part of the QFC card is the bar code which is just an image of black lines, if your phone has a camera and a screen with a reasonable resolution you can take a photo of the bar code and later display it to a reader. I've so far been able to try it once and successfully at a normal checkout line, but the reaction from the checkout lady was enough that I may in the future just keep a card in my car. She was very excited, asked me what kind of phone I had, called over another checkout person and generally made a large fuss. Also the checkout people generally don't mind giving me a new card if I don't have one with me.
On Monday in Germany we went to Marienplatz and wandered around the Christmas Market, some of the stores, had drinks in a little pub, visited the Toy Museum, and checked out an impressive looking church. We accidentally drew in some other tourists as we stood gaping at the Glockenspiel tower waiting for the little show to begin at the wrong hour. That night Megan and Oliver came by our hotel and took us out to a traditional Bavarian restaurant and brewery that had been brewing beer there for hundreds of years. It was fun although we may have kept Megan and Oliver out too late on a weeknight.
The next day we went to the Deutsches Museum the largest science and technology museum in the world. And indeed it is very large, six floors on a large grounds. I needed to better pace myself: I spent too much energy being interested in the engineering sections with steam engines, mining, aerospace etc. I was completely worn out by the time we got to physics, chemistry, etc. etc. and we didn't even look in the natural sciences section. Anyway, its very large. That night we ate with Jon at an Italian restaurant. During the meal two period dressed children came in and began singing then tried to shake down their captive audience in the restaurant asking for money. The man at the table next to us asked one of the children what charity the money was going towards, the child said they kept the money, and the man said never mind then and sent the child away.
PowerShell gives us a real CLI for Windows based around .Net stuff. I don't like the creation of a new shell language but I suppose it makes sense given that they want something C# like but not C# exactly since that's much to verbose and strict for a CLI. One of the functions you can override is the TabExpansion function which is used when you tab complete commands. I really like this and so I've added on to the standard implementation to support replacing a variable name with its value, tab completion of available commands, previous command history, and drive names (there not restricted to just one letter in PS).
Learning the new language was a bit of a chore but MSDN helped. A couple of things to note, a statement that has a return value that you don't do anything with is implicitly the return value for the current function. That's why there's no explicit return's in my TabExpansion function. Also, if you're TabExpansion function fails or returns nothing then the builtin TabExpansion function runs which does just filenames. This is why you can see that the standard TabExpansion function doesn't handle normal filenames: it does extra stuff (like method and property completion on variables that represent .Net objects) but if there's no fancy extra stuff to be done it lets the builtin one take a crack.
Here's my TabExpansion function. Probably has bugs, so watch out!
function EscapePath([string] $path, [string] $original)
{
if ($path.Contains(' ') -and !$original.Contains(' '))
{
'"' $path '"';
}
else
{
$path;
}
}
function PathRelativeTo($pathDest, $pathCurrent)
{
if ($pathDest.PSParentPath.ToString().EndsWith($pathCurrent.Path))
{
'.\' $pathDest.name;
}
else
{
$pathDest.FullName;
}
}
# This is the default function to use for tab expansion. It handles simple
# member expansion on variables, variable name expansion and parameter completion
# on commands. It doesn't understand strings so strings containing ; | ( or { may
# cause expansion to fail.
function TabExpansion($line, $lastWord)
{
switch -regex ($lastWord)
{
# Handle property and method expansion...
'(^.*)(\$(\w|\.) )\.(\w*)$' {
$method = [Management.Automation.PSMemberTypes] `
'Method,CodeMethod,ScriptMethod,ParameterizedProperty'
$base = $matches[1]
$expression = $matches[2]
Invoke-Expression ('$val=' $expression)
$pat = $matches[4] '*'
Get-Member -inputobject $val $pat | sort membertype,name |
where { $_.name -notmatch '^[gs]et_'} |
foreach {
if ($_.MemberType -band $method)
{
# Return a method...
$base $expression '.' $_.name '('
}
else {
# Return a property...
$base $expression '.' $_.name
}
}
break;
}
# Handle variable name expansion...
'(^.*\$)([\w\:]*)$' {
$prefix = $matches[1]
$varName = $matches[2]
foreach ($v in Get-Childitem ('variable:' $varName '*'))
{
if ($v.name -eq $varName)
{
$v.value
}
else
{
$prefix $v.name
}
}
break;
}
# Do completion on parameters...
'^-([\w0-9]*)' {
$pat = $matches[1] '*'
# extract the command name from the string
# first split the string into statements and pipeline elements
# This doesn't handle strings however.
$cmdlet = [regex]::Split($line, '[|;]')[-1]
# Extract the trailing unclosed block e.g. ls | foreach { cp
if ($cmdlet -match '\{([^\{\}]*)$')
{
$cmdlet = $matches[1]
}
# Extract the longest unclosed parenthetical expression...
if ($cmdlet -match '\(([^()]*)$')
{
$cmdlet = $matches[1]
}
# take the first space separated token of the remaining string
# as the command to look up. Trim any leading or trailing spaces
# so you don't get leading empty elements.
$cmdlet = $cmdlet.Trim().Split()[0]
# now get the info object for it...
$cmdlet = @(Get-Command -type 'cmdlet,alias' $cmdlet)[0]
# loop resolving aliases...
while ($cmdlet.CommandType -eq 'alias') {
$cmdlet = @(Get-Command -type 'cmdlet,alias' $cmdlet.Definition)[0]
}
# expand the parameter sets and emit the matching elements
foreach ($n in $cmdlet.ParameterSets | Select-Object -expand parameters)
{
$n = $n.name
if ($n -like $pat) { '-' $n }
}
break;
}
default {
$varNameStar = $lastWord '*';
foreach ($n in @(Get-Childitem $varNameStar))
{
$name = PathRelativeTo ($n) ($PWD);
if ($n.PSIsContainer)
{
EscapePath ($name '\') ($lastWord);
}
else
{
EscapePath ($name) ($lastWord);
}
}
if (!$varNameStar.Contains('\'))
{
foreach ($n in @(Get-Command $varNameStar))
{
if ($n.CommandType.ToString().Equals('Application'))
{
foreach ($ext in @((cat Env:PathExt).Split(';')))
{
if ($n.Path.ToString().ToLower().EndsWith(($ext).ToString().ToLower()))
{
EscapePath($n.Path) ($lastWord);
}
}
}
else
{
EscapePath($n.Name) ($lastWord);
}
}
foreach ($n in @(Get-psdrive $varNameStar))
{
EscapePath($n.name ":") ($lastWord);
}
}
foreach ($n in @(Get-History))
{
if ($n.CommandLine.StartsWith($line) -and $n.CommandLine -ne $line)
{
$lastWord $n.CommandLine.Substring($line.Length);
}
}
# Add the original string to the end of the expansion list.
$lastWord;
break;
}
}
}
Windows allows for application protocols in which, through the registry, you specify a URL scheme and a command line to have that URL passed to your application. Its an easy way to hook a webbrowser up to your application. Anyone can read the doc above and then walk through the registry and pick out the application protocols but just from that info you can't tell what the application expects these URLs to look like. I did a bit of research on some of the application protocols I've seen which is listed below. Good places to look for information on URI schemes: Wikipedia URI scheme, and ESW Wiki UriSchemes.
Scheme | Name | Notes |
---|---|---|
search-ms | Windows Search Protocol |
The search-ms application protocol is a convention for querying the Windows Search index. The protocol enables applications, like Microsoft Windows Explorer, to query the index with
parameter-value arguments, including property arguments, previously saved searches, Advanced Query Syntax, Natural Query Syntax, and language code identifiers (LCIDs) for both the Indexer and
the query itself. See the MSDN docs for search-ms for more info. Example: search-ms:query=food |
Explorer.AssocProtocol.search-ms | ||
OneNote | OneNote Protocol |
From the OneNote help: /hyperlink "pagetarget" - Starts OneNote and opens the page specified by the pagetarget parameter. To obtain the hyperlink for any page in a OneNote
notebook, right-click its page tab and then click Copy Hyperlink to this Page.Example: onenote:///\\GUMMO\Users\davris\Documents\OneNote%20Notebooks\OneNote%202007%20Guide\Getting%20Started%20with%20OneNote.one#section-id={692F45F5-A42A-415B-8C0D-39A10E88A30F}&end |
callto | Callto Protocol |
ESW Wiki Info on callto Skype callto info NetMeeting callto info Example: callto://+12125551234 |
itpc | iTunes Podcast |
Tells iTunes to subscribe to an indicated podcast. iTunes documentation. C:\Program Files\iTunes\iTunes.exe /url "%1" Example: itpc:http://www.npr.org/rss/podcast.php?id=35 |
iTunes.AssocProtocol.itpc | ||
pcast | ||
iTunes.AssocProtocol.pcast | ||
Magnet | Magnet URI | Magnet URL scheme described by Wikipedia. Magnet URLs identify a resource by a hash of that resource so that when used in P2P scenarios no central authority is necessary to create URIs for a resource. |
mailto | Mail Protocol |
RFC 2368 - Mailto URL Scheme. Mailto Syntax Opens mail programs with new message with some parameters filled in, such as the to, from, subject, and body. Example: mailto:?to=david.risney@gmail.com&subject=test&body=Test of mailto syntax |
WindowsMail.Url.Mailto | ||
MMS | mms Protocol |
MSDN describes associated protocols. Wikipedia describes MMS. "C:\Program Files\Windows Media Player\wmplayer.exe" "%L" Also appears to be related to MMS cellphone messages: MMS IETF Draft. |
WMP11.AssocProtocol.MMS | ||
secondlife | [SecondLife] |
Opens SecondLife to the specified location, user, etc. SecondLife Wiki description of the URL scheme. "C:\Program Files\SecondLife\SecondLife.exe" -set SystemLanguage en-us -url "%1" Example: secondlife://ahern/128/128/128 |
skype | Skype Protocol |
Open Skype to call a user or phone number. Skype's documentation Wikipedia summary of skype URL scheme "C:\Program Files\Skype\Phone\Skype.exe" "/uri:%l" Example: skype:+14035551111?call |
skype-plugin | Skype Plugin Protocol Handler |
Something to do with adding plugins to skype? Maybe. "C:\Program Files\Skype\Plugin Manager\skypePM.exe" "/uri:%1" |
svn | SVN Protocol |
Opens TortoiseSVN to browse the repository URL specified in the URL. C:\Program Files\TortoiseSVN\bin\TortoiseProc.exe /command:repobrowser /path:"%1" |
svn+ssh | ||
tsvn | ||
webcal | Webcal Protocol |
Wikipedia describes webcal URL scheme. Webcal URL scheme description. A URL that starts with webcal:// points to an Internet location that contains a calendar in iCalendar format. "C:\Program Files\Windows Calendar\wincal.exe" /webcal "%1" Example: webcal://www.lightstalkers.org/LS.ics |
WindowsCalendar.UrlWebcal.1 | ||
zune | Zune Protocol |
Provides access to some Zune operations such as podcast subscription (via Zune Insider). "c:\Program Files\Zune\Zune.exe" -link:"%1" Example: zune://subscribe/?name=http://feeds.feedburner.com/wallstrip. |
feed | Outlook Add RSS Feed |
Identify a resource that is a feed such as Atom or RSS. Implemented by Outlook to add the indicated feed to Outlook. Feed URI scheme pre-draft document "C:\PROGRA~2\MICROS~1\Office12\OUTLOOK.EXE" /share "%1" |
im | IM Protocol |
RFC 3860 IM URI scheme description Like mailto but for instant messaging clients. Registered by Office Communicator but I was unable to get it to work as described in RFC 3860. "C:\Program Files (x86)\Microsoft Office Communicator\Communicator.exe" "%1" |
tel | Tel Protocol |
RFC 5341 - tel URI scheme IANA assignment RFC 3966 - tel URI scheme description Call phone numbers via the tel URI scheme. Implemented by Office Communicator. "C:\Program Files (x86)\Microsoft Office Communicator\Communicator.exe" "%1" |
Sarah asked me if I knew of a syntax highlighter for the QuickBase formula language which she uses at work. I couldn't find one but thought it might be fun to make a QuickBase Formula syntax highlighter based on the QuickBase help's description of the formula syntax. Thankfully the language is relatively simple since my skills with ANTLR, the parser generator, are rusty now and I've only used it previously for personal projects (like Javaish, the ridiculous Java based shell idea I had).
With the help of some great ANTLR examples and an ANTLR cheat sheet I was able to come up with the grammar that parses the QuickBase Formula syntax and prints out the same formula marked up with HTML SPAN tags and various CSS classes. ANTLR produces the parser in Java which I wrapped up in an applet, put in a jar, and embedded in an HTML page. The script in that page runs user input through the applet's parser and sticks the output at the bottom of the page with appropriate CSS rules to highlight and print the formula in a pretty fashion.
What I learned: