MSDN covers the topic of JavaScript and WinRT type conversions provided by Chakra (JavaScript Representation of Windows Runtime Types and Considerations when Using the Windows Runtime API), but for the questions I get about it I’ll try to lay out some specifics of that discussion more plainly. I’ve made a TL;DR JavaScript types and WinRT types summary table.
WinRT | Conversion | JavaScript |
---|---|---|
Struct | ↔️ | JavaScript object with matching property names |
Class or interface instance | ➡ | JavaScript object with matching property names |
Windows.Foundation.Collections.IPropertySet | ➡ | JavaScript object with arbitrary property names |
Any | ⃠ | DOM object |
Chakra, the JavaScript engine powering the Edge browser and JavaScript Windows Store apps, does the work to project WinRT into JavaScript. It is responsible for, among other things, converting back and forth between JavaScript types and WinRT types. Some basics are intuitive, like a JavaScript string is converted back and forth with WinRT’s string representation. For other basic types check out the MSDN links at the top of the page. For structs, interface instances, class instances, and objects things are more complicated.
A struct, class instance, or interface instance in WinRT is projected into JavaScript as a JavaScript object with corresponding property names and values. This JavaScript object representation of a WinRT type can be passed into other WinRT APIs that take the same underlying type as a parameter. This JavaScript object is special in that Chakra keeps a reference to the underlying WinRT object and so it can be reused with other WinRT APIs.
However, if you start with plain JavaScript objects and want to interact with WinRT APIs that take non-basic WinRT types, your options are less plentiful. You can use a plain JavaScript object as a WinRT struct, so long as the property names on the JavaScript object match the WinRT struct’s. Chakra will implicitly create an instance of the WinRT struct for you when you call a WinRT method that takes that WinRT struct as a parameter and fill in the WinRT struct’s values with the values from the corresponding properties on your JavaScript object.
// C# WinRT component
public struct ExampleStruct
{
public string String;
public int Int;
}
public sealed class ExampleStructContainer
{
ExampleStruct value;
public void Set(ExampleStruct value)
{
this.value = value;
}
public ExampleStruct Get()
{
return this.value;
}
}
// JS code
var structContainer = new ExampleWinRTComponent.ExampleNamespace.ExampleStructContainer();
structContainer.set({ string: "abc", int: 123 });
console.log("structContainer.get(): " + JSON.stringify(structContainer.get()));
// structContainer.get(): {"string":"abc","int":123}
You cannot have a plain JavaScript object and use it as a WinRT class instance or WinRT interface instance. Chakra does not provide such a conversion even with ES6 classes.
You cannot take a JavaScript object with arbitrary property names that are unknown at compile time and don’t correspond to a specific WinRT struct and pass that into a WinRT method. If you need to do this, you have to write additional JavaScript code to explicitly convert your arbitrary JavaScript object into an array of property name and value pairs or something else that could be represented in WinRT.
However, the other direction you can do. An instance of a Windows.Foundation.Collections.IPropertySet implementation in WinRT is projected into JavaScript as a JavaScript object with property names and values corresponding to the key and value pairs in the IPropertySet. In this way you can project a WinRT object as a JavaScript object with arbitrary property names and types. But again, the reverse is not possible. Chakra will not convert an arbitrary JavaScript object into an IPropertySet.
// C# WinRT component
public sealed class PropertySetContainer
{
private Windows.Foundation.Collections.IPropertySet otherValue = null;
public Windows.Foundation.Collections.IPropertySet other
{
get
{
return otherValue;
}
set
{
otherValue = value;
}
}
}
public sealed class PropertySet : Windows.Foundation.Collections.IPropertySet
{
private IDictionary map = new Dictionary();
public PropertySet()
{
map.Add("abc", "def");
map.Add("ghi", "jkl");
map.Add("mno", "pqr");
}
// ... rest of PropertySet implementation is simple wrapper around the map member.
// JS code
var propertySet = new ExampleWinRTComponent.ExampleNamespace.PropertySet();
console.log("propertySet: " + JSON.stringify(propertySet));
// propertySet: {"abc":"def","ghi":"jkl","mno":"pqr"}
var propertySetContainer = new ExampleWinRTComponent.ExampleNamespace.PropertySetContainer();
propertySetContainer.other = propertySet;
console.log("propertySetContainer.other: " + JSON.stringify(propertySetContainer.other));
// propertySetContainer.other: {"abc":"def","ghi":"jkl","mno":"pqr"}
try {
propertySetContainer.other = { "123": "456", "789": "012" };
}
catch (e) {
console.error("Error setting propertySetContainer.other: " + e);
// Error setting propertySetContainer.other: TypeError: Type mismatch
}
There’s also no way to implicitly convert a DOM object into a WinRT type. If you want to write third party WinRT code that interacts with the DOM, you must do so indirectly and explicitly in JavaScript code that is interacting with your third party WinRT. You’ll have to extract the information you want from your DOM objects to pass into WinRT methods and similarly have to pass messages out from WinRT that say what actions the JavaScript should perform on the DOM.
WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
In IE10 and other new browsers one may create MessageChannel objects that have two MessagePorts each connected (w3c spec calls it entangled) to one another such that postMessage on one port results in the message event firing on the other. You can pass an array of ports as the last parameter to postMessage and they show up in the ports property of the message event arg.
The postMessage here is like the worker postMessage and unlike the window and iframe postMessage in that it applies no origin checking:
Unfortunately the origin isn't an optional parameter at the end to make the two postMessages have the same signature.
On the event handler side, the event arg always has an origin property. But in the no origin case it is always the empty string.
There is also a source property on the message event arg which if set is an object that has a postMessage property allowing you to post back to your caller. It is set for the origin case, however, in the no origin case this property is null. This is somewhat reasonable because in the case of MessagePort and Workers there are only two endpoints so you always know the source of a message implicitly. Unlike the origin case in which any iframe or window can be calling postMessage on any other iframe or window and the caller is unknown. So not unreasonable but it would be nice if the source property was always set for consistency.
When a MessageChannel is created it has two MessagePorts, but until those ports are started they will queue up any messages they receive. Once started they will dispatch all queued messages. Ports don't have to be started to send messages.
A port may be started in two ways, either by explicitly calling the start method on the port, or by setting the onmessage callback property on the port. However, adding an event listener via addEventListener("message", does not start the port. It works this way in IE and Chrome and the spec states this as well.
The justification is that since you can have only one callback via onmessage that once set you must implicitly be ready to receive messages and its fine to start the port. As opposed to the addEventListener in which case the user agent cannot start implicitly because it doesn't know how many event listeners will be added. I found Hixie stating this justification in geoloc meeting notes.
Cool and (relatively) new methods on the JavaScript Array object are here in the most recent versions of your favorite browser! More about them on ECMAScript5, MSDN, the IE blog, or Mozilla's documentation. Here's the list that's got me excited:
For my GeolocMock weekend project I intended to use the Bing Maps API to display a map in a WebBrowser control and allow the user to interact with that to select a location to be consumed by my application. Getting my .NET code to talk to the JavaScript in the WebBrowser control was surprisingly easy.
To have .NET execute JavaScript code you can use the InvokeScript method passing the name of the JavaScript function to execute and an object array of parameters to pass:
this.webBrowser2.Document.InvokeScript("onLocationStateChanged",
new object[] {
latitudeTextBoxText,
longitudeTextBoxText,
altitudeTextBoxText,
uncertaintyTextBoxText
});
The other direction, having JavaScript call into .NET is slightly more complicated but still pretty easy as far as language interop goes. The first step is to mark your assembly as ComVisible so that it can interact with JavaScript via COM. VS had already added a ComVisible declaration to my project I just had to change the value to true.
[assembly: ComVisible(true)]
Next set ObjectForScripting attribute to the object you want to expose to JavaScript.
this.webBrowser2.ObjectForScripting = this.locationState;
Now that object is exposed as window.external in JavaScript and you can call methods on it.
window.external.Set(lat, long, alt, gUncert);
However you don't seem to be able to test for the existence of methods off of it. For example the following JavaScript generates an exception for me even though I have a Set method:
if (window.external && window.external.Set) {