The scrollbars in UWP WebView and in Edge have different default behavior leading to many emails to my team. (Everything I talk about here is for the EdgeHtml based WebView and Edge browser and does not apply to the Chromium based Edge browser and WebView2).
There is a Edge only -ms-overflow-style
CSS property that controls scroll behavior. We have a
different default for this in the WebView as compared to the Edge browser. If you want the appearance of the scrollbar in the WebView to match the browser then you must explicitly set that CSS
property. The Edge browser default is scrollbar
which gives us a Windows desktop styled non-auto-hiding scrollbar. The WebView default is -ms-autohiding-scrollbar
which
gives a sort of compromise between desktop and UWP app scrollbar behavior. In this configuration it is auto-hiding. When used with the mouse you'll get Windows desktop styled scrollbars and when
used with touch you'll get the UWP styled scrollbars.
Since WebViews are intended to be used in apps this style is the default in order to better match the app's scrollbars. However this difference between the browser and WebView has led to confusion.
Here’s an -ms-overflow-style JSFiddle showing the difference between the two styles. Try it in the Edge browser and in WebView. An easy way to try it in the Edge WebView is using the JavaScript Browser.
JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.
The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.
This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.
If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.
The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.
When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target.
If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated
event is fired (more details on
the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current
page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing
the WebUIApplication activated event.
Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
MSApp.pageHandlesAllApplicationActivations(true)
API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
does require of course that all of your pages all handle all activation kinds about which any part of your app cares.
I've made a PowerShell script to show system toast notifications with WinRT and PowerShell. Along the way I learned several interesting things.
First off calling WinRT from PowerShell involves a strange syntax. If you want to use a class you write [-Class-,-Namespace-,ContentType=WindowsRuntime] first to tell PowerShell about the type. For example here I create a ToastNotification object:
[void][Windows.UI.Notifications.ToastNotification,Windows.UI.Notifications,ContentType=WindowsRuntime];
$toast = New-Object Windows.UI.Notifications.ToastNotification -ArgumentList $xml;
And
here I call the static method CreateToastNotifier on the ToastNotificationManager class:
[void][Windows.UI.Notifications.ToastNotificationManager,Windows.UI.Notifications,ContentType=WindowsRuntime];
$notifier = [Windows.UI.Notifications.ToastNotificationManager]::CreateToastNotifier($AppUserModelId);
With
this I can call WinRT methods and this is enough to show a toast but to handle the click requires a little more work.
To handle the user clicking on the toast I need to listen to the Activated event on the Toast object. However Register-ObjectEvent doesn't handle WinRT events. To work around this I created a .NET event wrapper class to turn the WinRT event into a .NET event that Register-ObjectEvent can handle. This is based on Keith Hill's blog post on calling WinRT async methods in PowerShell. With the event wrapper class I can run the following to subscribe to the event:
function WrapToastEvent {
param($target, $eventName);
Add-Type -Path (Join-Path $myPath "PoshWinRT.dll")
$wrapper = new-object "PoshWinRT.EventWrapper[Windows.UI.Notifications.ToastNotification,System.Object]";
$wrapper.Register($target, $eventName);
}
[void](Register-ObjectEvent -InputObject (WrapToastEvent $toast "Activated") -EventName FireEvent -Action {
...
});
To handle the Activated event I want to put focus back on the PowerShell window that created the toast. To do this I need to call the Win32 function SetForegroundWindow. Doing so from PowerShell is surprisingly easy. First you must tell PowerShell about the function:
Add-Type @"
using System;
using System.Runtime.InteropServices;
public class PInvoke {
[DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)]
public static extern bool SetForegroundWindow(IntPtr hwnd);
}
"@
Then
to call:
[PInvoke]::SetForegroundWindow((Get-Process -id $myWindowPid).MainWindowHandle);
But figuring out the HWND to give to SetForegroundWindow isn't totally straight forward. Get-Process exposes a MainWindowHandle property but if you start a cmd.exe prompt and then run PowerShell inside of that, the PowerShell process has 0 for its MainWindowHandle property. We must follow up process parents until we find one with a MainWindowHandle:
$myWindowPid = $pid;
while ($myWindowPid -gt 0 -and (Get-Process -id $myWindowPid).MainWindowHandle -eq 0) {
$myWindowPid = (gwmi Win32_Process -filter "processid = $($myWindowPid)" | select ParentProcessId).ParentProcessId;
}
2016-Nov-5: Updated post on using Let's Encrypt with NearlyFreeSpeech.net
I use NearlyFreeSpeech.net for my webhosting for my personal website and I've just finished setting up TLS via Let's Encrypt. The process was slightly more complicated than what you'd like from Let's Encrypt. So for those interested in doing the same on NearlyFreeSpeech.net, I've taken the following notes.
The standard Let's Encrypt client requires su/sudo access which is not available on NearlyFreeSpeech.net's servers. Additionally NFSN's webserver doesn't have any Let's Encrypt plugins installed. So I used the Let's Encrypt Without Sudo client. I followed the instructions listed on the tool's page with the addition of providing the "--file-based" parameter to sign_csr.py.
One thing the script doesn't produce is the chain file. But this topic "Let's Encrypt - Quick HOWTO for NSFN" covers how to obtain that:
curl -o domain.chn https://letsencrypt.org/certs/lets-encrypt-x1-cross-signed.pem
Now that you have all the required files, on your NFSN server make the directory /home/protected/ssl and copy your files into it. This is described in the NFSN topic provide certificates to NFSN. After copying the files and setting their permissions as described in the previous link you submit an assistance request. For me it was only 15 minutes later that everything was setup.
After enabling HTTPS I wanted to have all HTTP requests redirect to HTTPS. The normal Apache documentation on how to do this doesn't work on NFSN servers. Instead the NFSN FAQ describes it in "redirect http to https and HSTS". You use the X-Forwarded-Proto instead of the HTTPS variable because of how NFSN's virtual hosting is setup.
RewriteEngine on
RewriteCond %{HTTP:X-Forwarded-Proto} !https
RewriteRule ^.*$ https://%{SERVER_NAME}%{REQUEST_URI} [L,R=301]
Turning on HSTS is as simple as adding the HSTS HTTP header. However, the description in the above link didn't work because my site's NFSN realm isn't on the latest Apache yet. Instead I added the following to my .htaccess. After I'm comfortable with everything working well for a few days I'll start turning up the max-age to the recommended minimum value of 180 days.
Header set Strict-Transport-Security "max-age=3600;"
Finally, to turn on CSP I started up Fiddler with my CSP Fiddler extension. It allows me to determine the most restrictive CSP rules I could apply and still have all resources on my page load. From there I found and removed inline script and some content loaded via http and otherwise continued tweaking my site and CSP rules.
After I was done I checked out my site on SSL Lab's SSL Test to see what I might have done wrong or needed improving. The first time I went through these steps I hadn't included the chain file which the SSL Test told me about. I was able to add that file to the same files I had already previously generated from the Let's Encrypt client and do another NFSN assistance request and 15 minutes later the SSL Test had upgraded me from 'B' to 'A'.
nasa:
This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!
The only people they will talk with regularly are mission control and each other.
The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.
What will they be doing?
Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it.
A few other details:
- The crew follows a timeline that is similar to one used for the ISS crew.
- They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
- They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission.
Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
nasa:
This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!
The only people they will talk with regularly are mission control and each other.
The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.
What will they be doing?
Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it.
A few other details:
- The crew follows a timeline that is similar to one used for the ISS crew.
- They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
- They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission.
Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
More than 90% of Americans believe that the US government is unduly influenced by money, and the Mayday.US super PAC is raising $5M to fund the election campaigns of politicians who’ll pledge to dismantle super PACs and enact other campaign finance reforms. They raised more than $1M in 30 days last month, and this month, the goal is $5M. It’s the brainchild of Lawrence Lessig, who’s going to run prototype the project by running five electoral campaigns in 2014, and use the lessons of those projects to win enough anti-corruption seats in 2016 to effect real change.
Again, I’m not able to contribute to Mayday.US, because I’m a Canadian and Briton. But I ask my American friends to put in $10, and promise that I’ll put CAD1000 into any comparable Canadian effort and/or £1000 into a comparable UK effort. We all win when countries embrace evidence-based policy guided by doing what’s best for its citizens, rather than lining the pockets of corrupting multinationals.
Please reblog!
Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.
I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.
My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.
Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.
Only some calls to the AppBar WinRT object produced the issue:
var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView();
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just
setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set
caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.
I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS
object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0}
to make a color) and I had been mixing both in my tests without realizing there would be a difference.
I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0}
and
found the two structs to be byte wise exactly the same.
On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color:
Windows.UI.Colors.black;
. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these
predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my
C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make
sense again.
Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.
I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.
At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.
The original open source Wifi Hotpot for Windows 7, Windows 8 and Windows Server 2012!
Free open source software based router you can run on Windows to wirelessly share your Internet connection with other devices
WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
You don’t use the same password over and over right? Let’s be honest this is the day and age of the hacker. Eclectic Method brings you “Hackers” , Hollywood’s celebration of basement dwelling 128 bit encryption masters. They’ll shut down before you can trace them, hack into the mainframe…
Hack the planet!