You can use conditional breakpoints and debugging commands in windbg and cdb that together can amount to effectively patching a binary at runtime. This can be useful if you have symbols but you can't easily rebuild the binary. Or if the patch is small and the binary requires a great deal of time to rebuild.
If you want to skip a chunk of code you can set a breakpoint at the start address of the code to skip and set the breakpoint's command to change the instruction pointer register to point to the address at the end of the code to skip and go. Voila you're skipping over that code now. For example:
bp 0x6dd6879b "r @eip=0x6dd687c3 ; g"
You may want to modify parameters or variables and this is simple of course. In the following example a conditional breakpoint ANDs out a bit from dwFlags. Now when we run its as if no one is passing in that flag.
bp wiwi!RelativeCrack "?? dwFlags &= 0xFDFFFFFF;g"
Slightly more difficult is to modify string values. If the new string length is the same size or smaller than the previous, you may be able to modify the string value in place. But if the string is longer or the string memory isn't writable, you'll need a new chunk of memory into which to write your new string. You can use .dvalloc to allocate some memory and ezu to write a string into the newly allocated memory. In the following example I then overwrite the register containing the parameter I want to modify:
.dvalloc 100
ezu 000002a9`d4eb0000 "mfcore.dll"
r rcx = 000002a9`d4eb0000
You can also use .call to actually make new calls to methods or functions. Read more about that on the Old New Thing: Stupid debugger tricks: Calling functions and methods. Again, all of this can be used in a breakpoint command to effectively patch a binary.
Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.
I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.
My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.
Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.
Only some calls to the AppBar WinRT object produced the issue:
var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView();
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just
setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set
caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.
I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS
object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0}
to make a color) and I had been mixing both in my tests without realizing there would be a difference.
I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0}
and
found the two structs to be byte wise exactly the same.
On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color:
Windows.UI.Colors.black;
. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these
predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my
C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make
sense again.
Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.
I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.
At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.
I built timestamp.exe, a Windows command line tool to convert between computer and human readable date/time formats mostly for working on the first run wizard for IE8. We commonly write out our dates in binary form to the registry and in order to test and debug my work it became useful to be able to determine to what date the binary value of a FILETIME or SYSTEMTIME corresponded or to produce my own binary value of a FILETIME and insert it into the registry.
For instance, to convert to a binary value:
[PS C:\] timestamp -inString 2009/08/28:10:18 -outHexValue -convert filetime
2009/08/28:10:18 as FILETIME: 00 7c c8 d1 c8 27 ca 01
Converting in the other direction, if you don't know what format the bytes are in, just feed them in and timestamp will try all conversions and list only the valid ones:
[PS C:\] timestamp -inHexValue "40 52 1c 3b"
40 52 1c 3b as FILETIME: 1601-01-01:00:01:39.171
40 52 1c 3b as Unix Time: 2001-06-05:03:30:08.000
40 52 1c 3b as DOS Time: 2009-08-28:10:18:00.000
(it also supports OLE Dates, and SYSTEMTIME which aren't listed there because the hex value isn't valid for those types). Or use the guess
option to get timestamp's best guess:
[PS C:\] timestamp -inHexValue "40 52 1c 3b" -convert guess
40 52 1c 3b as DOS Time: 2009-08-28:10:18:00.000
When I first wrote this I had a bug in my function that parses the date-time value string in which I could parse 2009-07-02:10:18 just fine, but I wouldn't be able to parse 2009-09-02:10:18 correctly. This was my code:
success = swscanf_s(timeString, L"%hi%*[\\/- ,]%hi%*[\\/- ,]%hi%*[\\/- ,Tt:.]%hi%*[:.]%hi%*[:.]%hi%*[:.]%hi",
&systemTime->wYear,
&systemTime->wMonth,
&systemTime->wDay,
&systemTime->wHour,
&systemTime->wMinute,
&systemTime->wSecond,
&systemTime->wMilliseconds) > 1;
See the problem?
To convert between these various forms yourself read The Old New Thing date conversion article or Josh Poley's date time article. I previously wrote about date formats I like and dislike.