My first app for Windows 8 was Shout Text. You type into Shout Text, and your text is scaled up as large as possible while still fitting on the screen, as you type. It is the closest thing to a Hello World app as you'll find on the Windows Store that doesn't contain that phrase (by default) and I approached it as the simplest app I could make to learn about Windows modern app development and Windows Store app submission.
I rely on WinJS's default layout to use CSS transforms to scale up the user's text as they type. And they are typing into a simple content editable div.
The app was too simple for me to even consider using ads or charging for it which I learned more about in future apps.
The first interesting issue I ran into was that copying from and then pasting into the content editable div resulted in duplicates of the containing div with copied CSS appearing recursively inside of the content editable div. To fix this I had to catch the paste operation and remove the HTML data from the clipboard to ensure only the plain text data is pasted:
function onPaste() {
var text;
if (window.clipboardData) {
text = window.clipboardData.getData("Text").toString();
window.clipboardData.clearData("Html");
window.clipboardData.setData("Text", util.normalizeContentEditableText(text));
}
}
shoutText.addEventListener("beforepaste", function () { return false; }, false);
shoutText.addEventListener("paste", onPaste, false);
I additionally found an issue in IE in which applying a CSS transform to a content editable div that has focus doesn't move the screen position of the user input caret - the text is scaled up or down but the caret remains the same size and in the same place on the screen. To fix this I made the following hack to reapply the current cursor position and text selection which resets the screen position of the user input caret.
function resetCaret() {
setTimeout(function () {
var cursorPos = document.selection.createRange().duplicate();
cursorPos.select();
}, 200);
}
shoutText.attachEvent("onresize", function () { resetCaret(); }, true);
Stripe's web security CTF's level 0 and level 3 had SQL injection solutions described below.
app.get('/*', function(req, res) {
var namespace = req.param('namespace');
if (namespace) {
var query = 'SELECT * FROM secrets WHERE key LIKE ? || ".%"';
db.all(query, namespace, function(err, secrets) {
There's no input validation on the namespace parameter and it is injected into the SQL query with no encoding applied. This means you can use the '%' character as the namespace which is the wildcard character matching all secrets.
Code review red flag was using strings to query the database. Additional levels made this harder to exploit by using an API with objects to construct a query rather than strings and by running a query that only returned a single row, only ran a single command, and didn't just dump out the results of the query to the caller.
@app.route('/login', methods=['POST'])
def login():
username = flask.request.form.get('username')
password = flask.request.form.get('password')
if not username:
return "Must provide username\n"
if not password:
return "Must provide password\n"
conn = sqlite3.connect(os.path.join(data_dir, 'users.db'))
cursor = conn.cursor()
query = """SELECT id, password_hash, salt FROM users
WHERE username = '{0}' LIMIT 1""".format(username)
cursor.execute(query)
res = cursor.fetchone()
if not res:
return "There's no such user {0}!\n".format(username)
user_id, password_hash, salt = res
calculated_hash = hashlib.sha256(password + salt)
if calculated_hash.hexdigest() != password_hash:
return "That's not the password for {0}!\n".format(username)
There's little input validation on username before it is used to constrcut a SQL query. There's no encoding applied when constructing the SQL query string which is used to, given a username, produce the hashed password and the associated salt. Accordingly one can make username a part of a SQL query command which ensures the original select returns nothing and provide a new SELECT via a UNION that returns some literal values for the hash and salt. For instance the following in blue is the query template and the red is the username injected SQL code:
SELECT id, password_hash, salt FROM users WHERE username = 'doesntexist' UNION SELECT id, ('5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8') AS password_hash, ('word') AS salt FROM users WHERE username = 'bob' LIMIT 1
In the above I've supplied my own salt and hash such that my salt (word) plus my password (pass) hashed produce the hash I provided above. Accordingly, by
providing the above long and interesting looking username and password as 'pass' I can login as any user.
Code review red flag is again using strings to query the database. Although this level was made more difficult by using an API that returns only a single row and by using the execute method which only runs one command. I was forced to (as a SQL noob) learn the syntax of SELECT in order to figure out UNION and how to return my own literal values.
Fixed in Windows 8 is intra-line tab completion - you can try it out on the Windows 8 Consumer Preview now. If you open a command prompt, type a command, then move your cursor back into a token in the middle of the command and tab complete, the tab completion works on that whitespace delimited token and doesn't erase all text following the cursor. Like it does in pre Windows 8. And annoys the hell out of me. Yay!
Cursor spoofing. Great job!