dev - Dave's Blog

Search
My timeline on Mastodon

Right-To-Left Override Twitter Name

2020 Oct 21, 3:50

Its rare to find devs anticipating Unicode control characters showing up in user input. And the most fun when unanticipated is the Right-To-Left Override character U+202E. Unicode characters have an implicit direction so that for example by default Hebrew characters are rendered from right to left, and English characters are rendered left to right. The override characters force an explicit direction for all the text that follows.

I chose my Twitter display name to include the HTML encoding of the Right-To-Left Override character #x202E; as a sort of joke or shout out to my favorite Unicode control character. I did not anticipate that some Twitter clients in some of their UI would fail to encode it correctly. There's no way I can remove that from my display name now.


Try it on Amazon.


How about pages that want to tell you about the U+202E. 


PermalinkCommentsUnicode

Scrollbars in EdgeHtml WebView and Edge browser

2019 Aug 22, 5:35

The scrollbars in UWP WebView and in Edge have different default behavior leading to many emails to my team. (Everything I talk about here is for the EdgeHtml based WebView and Edge browser and does not apply to the Chromium based Edge browser and WebView2).

There is a Edge only -ms-overflow-style CSS property that controls scroll behavior. We have a different default for this in the WebView as compared to the Edge browser. If you want the appearance of the scrollbar in the WebView to match the browser then you must explicitly set that CSS property. The Edge browser default is scrollbar which gives us a Windows desktop styled non-auto-hiding scrollbar. The WebView default is -ms-autohiding-scrollbar which gives a sort of compromise between desktop and UWP app scrollbar behavior. In this configuration it is auto-hiding. When used with the mouse you'll get Windows desktop styled scrollbars and when used with touch you'll get the UWP styled scrollbars.

Since WebViews are intended to be used in apps this style is the default in order to better match the app's scrollbars. However this difference between the browser and WebView has led to confusion.

Here’s an -ms-overflow-style JSFiddle showing the difference between the two styles. Try it in the Edge browser and in WebView. An easy way to try it in the Edge WebView is using the JavaScript Browser.

PermalinkComments

Windows.Web.UI.Interop.WebViewControl localhost access

2018 Jul 25, 5:34

If you're developing with the new Windows.Web.UI.Interop.WebViewControl you may have noticed you cannot navigate to localhost HTTP servers. This is because the WebViewControl's WebView process is a UWP process. All UWP processes by default cannot use the loopback adapter as a security precaution. For development purposes you can allow localhost access using the checknetisolation command line tool on the WebViewControl's package just as you can for any other UWP app. The command should be the following:

checknetisolation loopbackexempt -a -n=Microsoft.Win32WebViewHost_cw5n1h2txyewy

As a warning checknetisolation is not good on errors. If you attempt to add a package but get its package family name wrong, checknetisolation just says OK:

C:\Users\davris>checknetisolation LoopbackExempt -a -n=Microsoft.BingWeather_4.21.2492.0_x86__8wekyb3d8bbwe
OK.
And if you then list the result of the add with the bad name you'll see the following:
[1] -----------------------------------------------------------------
Name: AppContainer NOT FOUND
SID: S-1-15-...

There's also a UI tool for modifying loopback exemption for packages available on GitHub and also one available with Fiddler.

As an additional note, I mentioned above you can try this for development. Do not do this in shipping products as this turns off the security protection for any consumer of the WebViewControl.

PermalinkCommentschecknetisolation loopback security uwp webview win32webview

Win10 PWA Terminology

2018 May 31, 8:26

Folks familiar with JavaScript UWP apps in Win10 have often been confused by what PWAs in Win10 actually are. TLDR: PWAs in Win10 are simply JavaScript UWP apps. The main difference between these JS UWP Apps and our non-PWA JS UWP apps are our target end developer audience, and how we get Win10 PWAs into the Microsoft Store. See this Win10 blog post on PWAs on Win10 for related info.

Web App

On the web a subset of web sites are web apps. These are web sites that have app like behavior - that is a user might call it an app like Outlook, Maps or Gmail. And they may also have a W3C app manifest.

A subset of web apps are progressive web apps. Progressive web apps are web apps that have a W3C app manifest and a service worker. Various OSes are beginning to support PWAs as first class apps on their platform. This is true for Win10 as well in which PWAs are run as a WWA.

Windows Web App

In Win10 a WWA (Windows Web App) is an unofficial term for a JavaScript UWP app. These are UWP apps so they have an AppxManifest.xml, they are packaged in an Appx package, they run in an App Container, they use WinRT APIs, and are installed via the Microsoft Store. Specific to WWAs though, is that the AppxManifest.xml specifies a StartPage attribute identifying some HTML content to be used as the app. When the app is activated the OS will create a WWAHost.exe process that hosts the HTML content using the EdgeHtml rendering engine.

Packaged vs Hosted Web App

Within that we have a notion of a packaged web app and an HWA (hosted web app). There's no real technical distinction for the end developer between these two. The only real difference is whether the StartPage identifies remote HTML content on the web (HWA), or packaged HTML content from the app's appx package (packaged web app). An end developer may create an app that is a mix of these as well, with HTML content in the package and HTML content from the web. These terms are more like ends on a continuum and identifying two different developer scenarios since the underlying technical aspect is pretty much identical.

Win10 PWA

Win10 PWAs are simply HWAs that specify a StartPage of a URI for a PWA on the web. These are still JavaScript UWP apps with all the same behavior and abilities as other UWP apps. We have two ways of getting PWAs into the Microsoft Store as Win10 PWAs. The first is PWA Builder which is a tool that helps PWA end developers create and submit to the Microsoft Store a Win10 PWA appx package. The second is a crawler that runs over the web looking for PWAs which we convert and submit to the Store using an automated PWA Builder-like tool to create a Win10 PWA from PWAs on the web (see Welcoming PWAs to Win10 for more info). In both cases the conversion involves examining the PWAs W3C app manifest and producing a corresponding AppxManifest.xml. Not all features supported by AppxManifest.xml are also available in the W3c app manifest. But the result of PWA Builder can be a working starting point for end developers who can then update the AppxManifest.xml as they like to support features like share targets or others not available in W3C app manifests.

PermalinkCommentsJS pwa uwp web

Tiny browser features: JSBrowser crash resistance

2018 May 13, 4:59

JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to implement tiny browser features in JavaScript and in this post I'm implementing crash resistance.

The normal DOM mechanisms for creating an HTML WebView create an in-process WebView, in which the WebView runs on a unique UI thread. But we can use the MSWebView constructor instead to create an out-of-process WebView in which the WebView runs in its own distinct WebView process. Unlike an in-process WebView, Web content running in an out-of-process WebView can only crash the WebView process and not the app process.

        this.replaceWebView = () => {
let webview = document.querySelector("#WebView");
// Cannot access webview.src - anything that would need to communicate with the webview process may fail
let oldSrc = browser.currentUrl;
const webviewParent = webview.parentElement;
webviewParent.removeChild(webview);
webview = new MSWebView();
Object.assign(this, {
"webview": webview
});
webview.setAttribute("id", "WebView");

// During startup our currentUrl field is blank. If the WebView has crashed
// and we were on a URI then we may obtain it from this property.
if (browser.currentUrl && browser.currentUrl != "") {
this.trigger("newWebview");
this.navigateTo(browser.currentUrl);
}
webviewParent.appendChild(webview);

I run replaceWebView during startup to replace the in-process WebView created via HTML markup with an out-of-process WebView. I could be doing more to dynamically copy styles, attributes, etc but I know what I need to set on the WebView and just do that.

When a WebView process crashes the corresponding WebView object is no longer useful and a new WebView element must be created. In fact if the old WebView object is used it may throw and will no longer have valid state. Accordingly when the WebView crashes I run replaceWebView again. Additionally, I need to store the last URI we've navigated to (browser.currentUrl in the above) since the crashed WebView object won't know what URI it is on after it crashes.

            webview.addEventListener("MSWebViewProcessExited", () => { 
if (browser.currentUrl === browser.lastCrashUrl) { ++browser.lastCrashUrlCrashCount;
}
else {
browser.lastCrashUrl = browser.currentUrl;
browser.lastCrashUrlCrashCount = 1;
}
// If we crash again and again on the same URI, maybe stop trying to load that URI.
if (browser.lastCrashUrlCrashCount >= 3) {
browser.lastCrashUrl = "";
browser.lastCrashUrlCrashCount = 0;
browser.currentUrl = browser.startPage;
}
this.replaceWebView();
});

I also keep track of the last URI that we recovered and how many times we've recovered that same URI. If the same URI crashes more than 3 times in a row then I assume that it will keep happening and I navigate to the start URI instead.

PermalinkCommentsbrowser javascript jsbrowser uwp webview win10

Multiple Windows in Win10 JavaScript UWP apps

2018 Mar 10, 1:47

Win10 Changes

In Win8.1 JavaScript UWP apps we supported multiple windows using MSApp DOM APIs. In Win10 we use window.open and window and a new MSApp API getViewId and the previous MSApp APIs are gone:

Win10 Win8.1
Create new window window.open MSApp.createNewView
New window object window MSAppView
viewId MSApp.getViewId(window) MSAppView.viewId

WinRT viewId

We use window.open and window for creating new windows, but then to interact with WinRT APIs we add the MSApp.getViewId API. It takes a window object as a parameter and returns a viewId number that can be used with the various Windows.UI.ViewManagement.ApplicationViewSwitcher APIs.

Delaying Visibility

Views in WinRT normally start hidden and the end developer uses something like TryShowAsStandaloneAsync to display the view once it is fully prepared. In the web world, window.open shows a window immediately and the end user can watch as content is loaded and rendered. To have your new windows act like views in WinRT and not display immediately we have added a window.open option. For example
let newWindow = window.open("https://example.com", null, "msHideView=yes");

Primary Window Differences

The primary window that is initially opened by the OS acts differently than the secondary windows that it opens:

Primary Secondary
window.open Allowed Disallowed
window.close Close app Close window
Navigation restrictions ACUR only No restrictions

The restriction on secondary windows such that they cannot open secondary windows could change in the future depending on feedback.

Same Origin Communication Restrictions

Lastly, there is a very difficult technical issue preventing us from properly supporting synchronous, same-origin, cross-window, script calls. That is, when you open a window that's same origin, script in one window is allowed to directly call functions in the other window and some of these calls will fail. postMessage calls work just fine and is the recommended way to do things if that's possible for you. Otherwise we continue to work on improving this.

PermalinkComments

Win10 UWP WebView AddWebAllowedObject details

2017 Sep 4, 3:09

The x-ms-webview HTML element has the void addWebAllowedObject(string name, any value) method and the webview XAML element has the void AddWebAllowedObject(String name, Object value) method. The object parameter is projected into the webview’s top-level HTML document’s script engine as a new property on the global object with property name set to the name parameter. It is not injected into the current document but rather it is projected during initialization of the next top-level HTML document to which the webview navigates.

Lifetime

If AddWebAllowedObject is called during a NavigationStarting event handler the object will be injected into the document resulting from the navigation corresponding to that event.

If AddWebAllowedObject is called outside of the NavigationStarting event handler it will apply to the navigation corresponding to the next explicit navigate method called on the webview or the navigation corresponding to the next NavigationStarting event handler that fires, whichever comes first.

To avoid this potential race, you should use AddWebAllowedObject in one of two ways: 1. During a NavigationStarting event handler, 2. Before calling a Navigate method and without returning to the main loop.

If called both before calling a navigate method and in the NavigationStarting event handler then the result is the aggregate of all those calls.

If called multiple times for the same document with the same name the last call wins and the previous are silently ignored.

If AddWebAllowedObject is called for a navigation and that navigation fails or redirects to a different URI, the AddWebAllowedObject call is silently ignored.

After successfully adding an object to a document, the object will no longer be projected once a navigation to a new document occurs.

WinRT access

If AddWebAllowedObject is called for a document with All WinRT access then projection will succeed and the object will be added.

If AddWebAllowedObject is called for a document which has a URI which has no declared WinRT access via ApplicationContentUriRules then Allow for web only WinRT access is given to that document.

If the document has Allow for web only WinRT access then projection will succeed only if the object’s runtimeclass has the Windows.Foundation.Metadata.AllowForWeb metadata attribute.

Object requirements

The object must implement the IAgileObject interface. Because the XAML and HTML webview elements run on ASTA view threads and the webview’s content’s JavaScript thread runs on another ASTA thread a developer should not create their non-agile runtimeclass on the view thread. To encourage end developers to do this correctly we require the object implements IAgileObject.

Property name

The name parameter must be a valid JavaScript property name, otherwise the call will fail silently. If the name is already a property name on the global object, that property is overwritten if the property is configurable. Non-configurable properties on the global object are not overwritten and the AddWebAllowedObject call fails silently. On success, the projected property is writable, configurable, and enumerable.

Errors

Some errors as described above fail silently. Other issues, such as lack of IAgileObject or lack of the AllowForWeb attribute result in an error in the JavaScript developer console.

PermalinkComments

Tweet from The Practical Dev

2016 Nov 14, 9:31
I ▯ Unicode
PermalinkComments

Tweet from Windows Blogs

2016 Jun 10, 3:01
Using Device Portal to view debug logs for UWP http://blogs.windows.com/buildingapps/2016/06/10/using-device-portal-to-view-debug-logs-for-uwp/ 
PermalinkComments

Retweet of amirrajan

2016 Feb 11, 6:46
Somebody please make this text based game a reality. https://medium.com/@pistacchio/i-m-a-web-developer-and-i-ve-been-stuck-with-the-simplest-app-for-the-last-10-days-fb5c50917df#.7bbx2ziut … pic.twitter.com/NbcuQukO1T
PermalinkComments

Retweet of AndyPavia

2016 Feb 11, 1:33
@k_seks @jarennert Using FaceDetect on a Raspberry Pi #WebOnPi #IoT #windows10 @MSEdgeDev pic.twitter.com/Qk2PyoedBP
PermalinkComments

4 people are living in an isolated habitat for 30 days. Why? Science!

2016 Feb 1, 3:27

nasa:

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

  • The crew follows a timeline that is similar to one used for the ISS crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  
  • They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

PermalinkComments

4 people are living in an isolated habitat for 30 days. Why? Science!

2016 Feb 1, 3:27

nasa:

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

  • The crew follows a timeline that is similar to one used for the ISS crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  
  • They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

PermalinkComments

Retweet of iamdevloper

2016 Jan 28, 1:03
pic.twitter.com/hIp4Ytslhv
PermalinkComments

Retweet of FxSiteCompat

2016 Jan 27, 7:44
#Firefox 46 Developer Edition is out! Non-HTTPS pages w/ login form are now marked insecure https://www.fxsitecompat.com/versions/46/  pic.twitter.com/o2WZ6K2KxN
PermalinkComments

JavaScript Types and WinRT Types

2016 Jan 21, 5:35

MSDN covers the topic of JavaScript and WinRT type conversions provided by Chakra (JavaScript Representation of Windows Runtime Types and Considerations when Using the Windows Runtime API), but for the questions I get about it I’ll try to lay out some specifics of that discussion more plainly. I’ve made a TL;DR JavaScript types and WinRT types summary table.

WinRT Conversion JavaScript
Struct ↔️ JavaScript object with matching property names
Class or interface instance JavaScript object with matching property names
Windows.Foundation.Collections.IPropertySet JavaScript object with arbitrary property names
Any DOM object

Chakra, the JavaScript engine powering the Edge browser and JavaScript Windows Store apps, does the work to project WinRT into JavaScript. It is responsible for, among other things, converting back and forth between JavaScript types and WinRT types. Some basics are intuitive, like a JavaScript string is converted back and forth with WinRT’s string representation. For other basic types check out the MSDN links at the top of the page. For structs, interface instances, class instances, and objects things are more complicated.

A struct, class instance, or interface instance in WinRT is projected into JavaScript as a JavaScript object with corresponding property names and values. This JavaScript object representation of a WinRT type can be passed into other WinRT APIs that take the same underlying type as a parameter. This JavaScript object is special in that Chakra keeps a reference to the underlying WinRT object and so it can be reused with other WinRT APIs.

However, if you start with plain JavaScript objects and want to interact with WinRT APIs that take non-basic WinRT types, your options are less plentiful. You can use a plain JavaScript object as a WinRT struct, so long as the property names on the JavaScript object match the WinRT struct’s. Chakra will implicitly create an instance of the WinRT struct for you when you call a WinRT method that takes that WinRT struct as a parameter and fill in the WinRT struct’s values with the values from the corresponding properties on your JavaScript object.

// C# WinRT component
public struct ExampleStruct
{
public string String;
public int Int;
}

public sealed class ExampleStructContainer
{
ExampleStruct value;
public void Set(ExampleStruct value)
{
this.value = value;
}

public ExampleStruct Get()
{
return this.value;
}
}

// JS code
var structContainer = new ExampleWinRTComponent.ExampleNamespace.ExampleStructContainer();
structContainer.set({ string: "abc", int: 123 });
console.log("structContainer.get(): " + JSON.stringify(structContainer.get()));
// structContainer.get(): {"string":"abc","int":123}

You cannot have a plain JavaScript object and use it as a WinRT class instance or WinRT interface instance. Chakra does not provide such a conversion even with ES6 classes.

You cannot take a JavaScript object with arbitrary property names that are unknown at compile time and don’t correspond to a specific WinRT struct and pass that into a WinRT method. If you need to do this, you have to write additional JavaScript code to explicitly convert your arbitrary JavaScript object into an array of property name and value pairs or something else that could be represented in WinRT.

However, the other direction you can do. An instance of a Windows.Foundation.Collections.IPropertySet implementation in WinRT is projected into JavaScript as a JavaScript object with property names and values corresponding to the key and value pairs in the IPropertySet. In this way you can project a WinRT object as a JavaScript object with arbitrary property names and types. But again, the reverse is not possible. Chakra will not convert an arbitrary JavaScript object into an IPropertySet.

// C# WinRT component
public sealed class PropertySetContainer
{
private Windows.Foundation.Collections.IPropertySet otherValue = null;

public Windows.Foundation.Collections.IPropertySet other
{
get
{
return otherValue;
}
set
{
otherValue = value;
}
}
}

public sealed class PropertySet : Windows.Foundation.Collections.IPropertySet
{
private IDictionary map = new Dictionary();

public PropertySet()
{
map.Add("abc", "def");
map.Add("ghi", "jkl");
map.Add("mno", "pqr");
}
// ... rest of PropertySet implementation is simple wrapper around the map member.


// JS code
var propertySet = new ExampleWinRTComponent.ExampleNamespace.PropertySet();
console.log("propertySet: " + JSON.stringify(propertySet));
// propertySet: {"abc":"def","ghi":"jkl","mno":"pqr"}

var propertySetContainer = new ExampleWinRTComponent.ExampleNamespace.PropertySetContainer();
propertySetContainer.other = propertySet;
console.log("propertySetContainer.other: " + JSON.stringify(propertySetContainer.other));
// propertySetContainer.other: {"abc":"def","ghi":"jkl","mno":"pqr"}

try {
propertySetContainer.other = { "123": "456", "789": "012" };
}
catch (e) {
console.error("Error setting propertySetContainer.other: " + e);
// Error setting propertySetContainer.other: TypeError: Type mismatch
}

There’s also no way to implicitly convert a DOM object into a WinRT type. If you want to write third party WinRT code that interacts with the DOM, you must do so indirectly and explicitly in JavaScript code that is interacting with your third party WinRT. You’ll have to extract the information you want from your DOM objects to pass into WinRT methods and similarly have to pass messages out from WinRT that say what actions the JavaScript should perform on the DOM.

PermalinkCommentschakra development javascript winrt

Retweet of FTC

2015 Nov 15, 4:40
Cross-Device Tracking workshop introductory remarks by FTC Chairwoman @EdithRamirezFTC. Watch live: https://kvgo.com/ftc/11-16-2015-Cross-Device-Tracking … #FTCXDT
PermalinkComments

Retweet of alvarombedoya

2015 Nov 11, 9:42
3/ This lets advertisers figure out that 'John owns this laptop AND this smartphone.' http://www.steamfeed.com/silverpush-launches-cross-device-ad-targeting-with-unique-audio-beacon-technology/ … pic.twitter.com/hci0aUeLoN
PermalinkComments

Tweet from David_Risney

2015 Oct 7, 3:41
Panos Panay had an awesome performance at the Windows 10 Devices event yesterday! https://twitter.com/verge/status/651494054975434752 …
PermalinkComments

Tweet from David_Risney

2015 Sep 20, 8:45
Do you think VW maliciously evaded US emission requirements? As a dev, can't imagine working on such a project. http://www.nytimes.com/2015/09/19/business/volkswagen-is-ordered-to-recall-nearly-500000-vehicles-over-emissions-software.html …
PermalinkComments
Older Entries Creative Commons License Some rights reserved.