eu - Dave's Blog

Search
My timeline on Mastodon

Right-To-Left Override Twitter Name

2020 Oct 21, 3:50

Its rare to find devs anticipating Unicode control characters showing up in user input. And the most fun when unanticipated is the Right-To-Left Override character U+202E. Unicode characters have an implicit direction so that for example by default Hebrew characters are rendered from right to left, and English characters are rendered left to right. The override characters force an explicit direction for all the text that follows.

I chose my Twitter display name to include the HTML encoding of the Right-To-Left Override character #x202E; as a sort of joke or shout out to my favorite Unicode control character. I did not anticipate that some Twitter clients in some of their UI would fail to encode it correctly. There's no way I can remove that from my display name now.


Try it on Amazon.


How about pages that want to tell you about the U+202E. 


PermalinkCommentsUnicode

Application Content URI Rules wildcard syntax

2017 May 31, 4:48

Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.

Rules

You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.

The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.

Asterisk

Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.

Host

For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.

Path

For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c

Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.

If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.

As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.

PermalinkCommentsapplication-content-uri-rules programming windows windows-store

Tweet from David Risney

2016 Nov 20, 2:47
Just fun: draw a sketch and see how fast a Google neural net takes to figure out what it is https://quickdraw.withgoogle.com/# 
PermalinkComments

Tweet from David Risney

2016 Nov 3, 3:59
@FakeUnicode Spaces are technically not allowed in a URI so the only reasonable representation is percent encoded.
PermalinkComments

Tweet from David Risney

2016 Nov 3, 3:58
@FakeUnicode Reserved characters including brackets change meaning when decoded or encoded and so UA must not change those
PermalinkComments

Tweet from David Risney

2016 Nov 3, 3:57
@FakeUnicode At least some of that is from https://tools.ietf.org/html/rfc3986 . For unreserved characters (a-z0-9._-~) normal form is decoded.
PermalinkComments

Tweet from Liz Kreutz

2016 Oct 13, 6:46
For those interested: Clinton said gifs with a hard "G"
PermalinkComments

Tweet from David Risney

2016 Sep 12, 8:36
@FakeUnicode Deoxygenated?
PermalinkComments

Tweet from Rossen Atanassov

2016 Jun 8, 2:59
I recall meetings when we discussed pursuing WebGL... Now we're going open source with it :) https://github.com/MicrosoftEdge/WebGL 
PermalinkComments

Retweet of xeni

2016 Feb 25, 10:15
Yep. #nightlyshow pic.twitter.com/EUX3uVTBPH
PermalinkComments

Retweet of FakeUnicode

2016 Feb 12, 7:25
> typeof NaN 'number' > (╯°□°)╯︵ ┻━┻) ...
PermalinkComments

Retweet of securinti

2016 Feb 4, 6:11
[WRITE-UP] A tale of two offline @google Chrome UXSS vulns!http://ceukelai.re/a-tale-of-two-offline-chrome-uxss-vulns/ … pic.twitter.com/USZmlbVy2M
PermalinkComments

Retweet of kennwhite

2016 Feb 2, 4:34
I didn't realize so many Debian/Ubuntu apps don't/can't do cert verification. Also "untrusted websites" is a thing. pic.twitter.com/euTZzXuxzw
PermalinkComments

4 people are living in an isolated habitat for 30 days. Why? Science!

2016 Feb 1, 3:27

nasa:

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

  • The crew follows a timeline that is similar to one used for the ISS crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  
  • They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

PermalinkComments

4 people are living in an isolated habitat for 30 days. Why? Science!

2016 Feb 1, 3:27

nasa:

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

  • The crew follows a timeline that is similar to one used for the ISS crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  
  • They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

PermalinkComments

Retweet of f4grx

2016 Jan 26, 7:43
@FakeUnicode also UNICODE CONSORTIUM FACE REVIEWING EMOJI CODEPOINT REQUESTS
PermalinkComments

Retweet of FakeUnicode

2016 Jan 26, 7:15
OH COME ON. SERIOUSLY?? pic.twitter.com/EMdqGylC4L
PermalinkComments

Retweet of FakeUnicode

2016 Jan 24, 10:52
.@alolita How Ancient Egypt fell. "But great Pharaoh, we need a snake playing croquet." "You have like 50 snake symbols." "But, croquet!"
PermalinkComments

JavaScript Types and WinRT Types

2016 Jan 21, 5:35

MSDN covers the topic of JavaScript and WinRT type conversions provided by Chakra (JavaScript Representation of Windows Runtime Types and Considerations when Using the Windows Runtime API), but for the questions I get about it I’ll try to lay out some specifics of that discussion more plainly. I’ve made a TL;DR JavaScript types and WinRT types summary table.

WinRT Conversion JavaScript
Struct ↔️ JavaScript object with matching property names
Class or interface instance JavaScript object with matching property names
Windows.Foundation.Collections.IPropertySet JavaScript object with arbitrary property names
Any DOM object

Chakra, the JavaScript engine powering the Edge browser and JavaScript Windows Store apps, does the work to project WinRT into JavaScript. It is responsible for, among other things, converting back and forth between JavaScript types and WinRT types. Some basics are intuitive, like a JavaScript string is converted back and forth with WinRT’s string representation. For other basic types check out the MSDN links at the top of the page. For structs, interface instances, class instances, and objects things are more complicated.

A struct, class instance, or interface instance in WinRT is projected into JavaScript as a JavaScript object with corresponding property names and values. This JavaScript object representation of a WinRT type can be passed into other WinRT APIs that take the same underlying type as a parameter. This JavaScript object is special in that Chakra keeps a reference to the underlying WinRT object and so it can be reused with other WinRT APIs.

However, if you start with plain JavaScript objects and want to interact with WinRT APIs that take non-basic WinRT types, your options are less plentiful. You can use a plain JavaScript object as a WinRT struct, so long as the property names on the JavaScript object match the WinRT struct’s. Chakra will implicitly create an instance of the WinRT struct for you when you call a WinRT method that takes that WinRT struct as a parameter and fill in the WinRT struct’s values with the values from the corresponding properties on your JavaScript object.

// C# WinRT component
public struct ExampleStruct
{
public string String;
public int Int;
}

public sealed class ExampleStructContainer
{
ExampleStruct value;
public void Set(ExampleStruct value)
{
this.value = value;
}

public ExampleStruct Get()
{
return this.value;
}
}

// JS code
var structContainer = new ExampleWinRTComponent.ExampleNamespace.ExampleStructContainer();
structContainer.set({ string: "abc", int: 123 });
console.log("structContainer.get(): " + JSON.stringify(structContainer.get()));
// structContainer.get(): {"string":"abc","int":123}

You cannot have a plain JavaScript object and use it as a WinRT class instance or WinRT interface instance. Chakra does not provide such a conversion even with ES6 classes.

You cannot take a JavaScript object with arbitrary property names that are unknown at compile time and don’t correspond to a specific WinRT struct and pass that into a WinRT method. If you need to do this, you have to write additional JavaScript code to explicitly convert your arbitrary JavaScript object into an array of property name and value pairs or something else that could be represented in WinRT.

However, the other direction you can do. An instance of a Windows.Foundation.Collections.IPropertySet implementation in WinRT is projected into JavaScript as a JavaScript object with property names and values corresponding to the key and value pairs in the IPropertySet. In this way you can project a WinRT object as a JavaScript object with arbitrary property names and types. But again, the reverse is not possible. Chakra will not convert an arbitrary JavaScript object into an IPropertySet.

// C# WinRT component
public sealed class PropertySetContainer
{
private Windows.Foundation.Collections.IPropertySet otherValue = null;

public Windows.Foundation.Collections.IPropertySet other
{
get
{
return otherValue;
}
set
{
otherValue = value;
}
}
}

public sealed class PropertySet : Windows.Foundation.Collections.IPropertySet
{
private IDictionary map = new Dictionary();

public PropertySet()
{
map.Add("abc", "def");
map.Add("ghi", "jkl");
map.Add("mno", "pqr");
}
// ... rest of PropertySet implementation is simple wrapper around the map member.


// JS code
var propertySet = new ExampleWinRTComponent.ExampleNamespace.PropertySet();
console.log("propertySet: " + JSON.stringify(propertySet));
// propertySet: {"abc":"def","ghi":"jkl","mno":"pqr"}

var propertySetContainer = new ExampleWinRTComponent.ExampleNamespace.PropertySetContainer();
propertySetContainer.other = propertySet;
console.log("propertySetContainer.other: " + JSON.stringify(propertySetContainer.other));
// propertySetContainer.other: {"abc":"def","ghi":"jkl","mno":"pqr"}

try {
propertySetContainer.other = { "123": "456", "789": "012" };
}
catch (e) {
console.error("Error setting propertySetContainer.other: " + e);
// Error setting propertySetContainer.other: TypeError: Type mismatch
}

There’s also no way to implicitly convert a DOM object into a WinRT type. If you want to write third party WinRT code that interacts with the DOM, you must do so indirectly and explicitly in JavaScript code that is interacting with your third party WinRT. You’ll have to extract the information you want from your DOM objects to pass into WinRT methods and similarly have to pass messages out from WinRT that say what actions the JavaScript should perform on the DOM.

PermalinkCommentschakra development javascript winrt

Retweet of FakeUnicode

2016 Jan 10, 10:34
Support! Rather than "Combining" though they would be "Combing." https://twitter.com/martineno/status/686639564207841281 … [@martineno]
PermalinkComments
Older Entries Creative Commons License Some rights reserved.