JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.
The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.
This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.
If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.
The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.
When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target.
If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated
event is fired (more details on
the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current
page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing
the WebUIApplication activated event.
Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
MSApp.pageHandlesAllApplicationActivations(true)
API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
does require of course that all of your pages all handle all activation kinds about which any part of your app cares.
Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.
You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.
The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.
Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.
For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.
For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c
Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.
If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.
As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.
WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
Before we shipped IE8 there were no Accelerators, so we had some fun making our own for our favorite web services. I've got a small set of tips for creating Accelerators for other people's web services. I was planning on writing this up as an IE blog post, but Jon wrote a post covering a similar area so rather than write a full and coherent blog post I'll just list a few points:
There's no easy way to use local applications on a PC as the result of an accelerator or a search provider in IE8 but there is a hack-y/obvious way, that I'll describe here. Both accelerators and search providers in IE8 fill in URL templates and navigate to the resulting URL when an accelerator or search provider is executed by the user. These URLs are limited in scheme to http and https but those pages may do anything any other webpage may do. If your local application has an ActiveX control you could use that, or (as I will provide examples for) if the local application has registered for an application protocol you can redirect to that URL. In any case, unfortunately this means that you must put a webpage on the Internet in order to get an accelerator or search provider to use a local application.
For examples of the app protocol case, I've created a callto accelerator that uses whatever application is registered for the callto scheme on your system, and a Windows Search search provider that opens Explorer's search with your search query. The callto accelerator navigates to my redirection page with 'callto:' followed by the selected text in the fragment and the redirection page redirects to that callto URL. In the Windows Search search provider case the same thing happens except the fragment contains 'search-ms:query=' followed by the selected text, which starts Windows Search on your system with the selected text as the query. I've looked into app protocols previously.
I'm excited by HTML5's video tag as are plenty of other people. Once that comes about and once media fragments are adopted, linking to or embedding a portion of a video will be as easy as using the correct fragment on your URL thanks to the Media Fragments WG who has been hard at work since the last time I looked at fragments.
However, until that work is embraced by browsers, embedding portions of videos will continue to require work specific to the site from which you are embedding the video. On the YouTube blog they wrote about how to "link to the best parts in your videos", using a fragment syntax like '#t=1m15s' to start playback of the associated video at 1 minute and 15 seconds. Of course if you want to embed part of a Hulu video it will be different. Although I haven't found an authoritative source describing the URL syntax to use, you can follow Hulu's video guide on linking to part of a video and note how the URL changes as you adjust the slider on the time-line. It looks like their syntax for linking to a Hulu page is to add '?c=[start time in seconds](:[end time in seconds])' with the colon and end time optional in order to link to a portion of a video. And the syntax for embedding appears to be "http://www.hulu.com/embed/.../[start time in seconds](/[end time in seconds])" again with the end time optional.
For more sites, check out the Media Fragments WG's list of existing applications' proprietary fragmenting schemes.
The text/plain fragment documented in RFC 5147 and described on Erik Wilde's blog struck my interest and, like the XML fragment, I wanted to see if I could implement this in IE. In this case there's no XSLT for me to edit so, like my plain/text word wrap bookmarklet I've implemented it as a bookmarklet. This is only a partial implementation as it doesn't implement the integrity checks.
Check out my text/plain fragment bookmarklet.
Information about URI Fragments, the portion of URIs that follow the '#' at the end and that are used to navigate within a document, is scattered throughout various documents which I usually have to hunt down. Instead I'll link to them all here.
Definitions. Fragments are defined in the URI RFC which states that they're used to identify a secondary resource that is related to the primary resource identified by the URI as a subset of the primary, a view of the primary, or some other resource described by the primary. The interpretation of a fragment is based on the mime type of the primary resource. Tim Berners-Lee notes that determining fragment meaning from mime type is a problem because a single URI may contain a single fragment, however over HTTP a single URI can result in the same logical resource represented in different mime types. So there's one fragment but multiple mime types and so multiple interpretations of the one fragment. The URI RFC says that if an author has a single resource available in multiple mime types then the author must ensure that the various representations of a single resource must all resolve fragments to the same logical secondary resource. Depending on which mime types you're dealing with this is either not easy or not possible.
HTTP. In HTTP when URIs are used, the fragment is not included. The General Syntax section of the HTTP standard says it uses the definitions of 'URI-reference' (which includes the fragment), 'absoluteURI', and 'relativeURI' (which don't include the fragment) from the URI RFC. However, the 'URI-reference' term doesn't actually appear in the BNF for the protocol. Accordingly the headers like 'Request-URI', 'Content-Location', 'Location', and 'Referer' which include URIs are defined with 'absoluteURI' or 'relativeURI' and don't include the fragment. This is in keeping with the original fragment definition which says that the fragment is used as a view of the original resource and consequently only needed for resolution on the client. Additionally, the URI RFC explicitly notes that not including the fragment is a privacy feature such that page authors won't be able to stop clients from viewing whatever fragments the client chooses. This seems like an odd claim given that if the author wanted to selectively restrict access to portions of documents there are other options for them like breaking out the parts of a single resource to which the author wishes to restrict access into separate resources.
HTML. In HTML, the HTML mime type RFC defines HTML's fragment use which consists of fragments referring to elements with a corresponding 'id' attribute or one of a particular set of elements with a corresponding 'name' attribute. The HTML spec discusses fragment use additionally noting that the names and ids must be unique in the document and that they must consist of only US-ASCII characters. The ID and NAME attributes are further restricted in section 6 to only consist of alphanumerics, the hyphen, period, colon, and underscore. This is a subset of the characters allowed in the URI fragment so no encoding is discussed since technically its not needed. However, practically speaking, browsers like FireFox and Internet Explorer allow for names and ids containing characters outside of the defined set including characters that must be percent-encoded to appear in a URI fragment. The interpretation of percent-encoded characters in fragments for HTML documents is not consistent across browsers (or in some cases within the same browser) especially for the percent-encoded percent.
Text. Text/plain recently got a fragment definition that allows fragments to refer to particular lines or characters within a text document. The scheme no longer includes regular expressions, which disappointed me at first, but in retrospect is probably good idea for increasing the adoption of this fragment scheme and for avoiding the potential for ubiquitous DoS via regex. One of the authors also notes this on his blog. I look forward to the day when this scheme is widely implemented.
XML. XML has the XPointer framework to define its fragment structure as noted by the XML mime type definition. XPointer consists of a general scheme that contains subschemes that identify a subset of an XML document. Its too bad such a thing wasn't adopted for URI fragments in general to solve the problem of a single resource with multiple mime type representations. I wrote more about XPointer when I worked on hacking XPointer into IE.
SVG and MPEG. Through the Media Fragments Working Group I found a couple more fragment scheme definitions. SVG's fragment scheme is defined in the SVG documentation and looks similar to XML's. MPEG has one defined but I could only find it as an ISO document "Text of ISO/IEC FCD 21000-17 MPEG-12 FID" and not as an RFC which is a little disturbing.
AJAX. AJAX websites have used fragments as an escape hatch for two issues that I've seen. The first is getting a unique URL for versions of a page that are produced on the client by script. The fragment may be changed by script without forcing the page to reload. This goes outside the rules of the standards by using HTML fragments in a fashion not called out by the HTML spec. but it does seem to be inline with the spirit of the fragment in that it is a subview of the original resource and interpretted client side. The other hack-ier use of the fragment in AJAX is for cross domain communication. The basic idea is that different frames or windows may not communicate in normal fashions if they have different domains but they can view each other's URLs and accordingly can change their own fragments in order to send a message out to those who know where to look. IMO this is not inline with the spirit of the fragment but is rather a cool hack.