By the URI RFC there is only one way to represent a particular IPv4 address in the host of a URI. This is the standard dotted decimal notation of four bytes in decimal with no leading zeroes delimited by periods. And no leading zeros are allowed which means there's only one textual representation of a particular IPv4 address.
However as discussed in the URI RFC, there are other forms of IPv4 addresses that although not officially allowed are generally accepted. Many implementations used inet_aton to parse the address from the URI which accepts more than just dotted decimal. Instead of dotted decimal, each dot delimited part can be in decimal, octal (if preceded by a '0') or hex (if preceded by '0x' or '0X'). And that's each section individually - they don't have to match. And there need not be 4 parts: there can be between 1 and 4 (inclusive). In case of less than 4, the last part in the string represents all of the left over bytes, not just one.
For example the following are all equivalent:
The bread and butter of URI related security issues is when one part of the system disagrees with another about the interpretation of the URI. So this non-standard, non-normal form syntax has been been a great source of security issues in the past. Its mostly well known now (CreateUri normalizes these non-normal forms to dotted decimal), but occasionally a good tool for bypassing naive URI blocking systems.
IPv6 address syntax consists of 8 groupings of colon delimited 16-bit hex values making up the 128-bit address. An optional double colon
can replace any consecutive sequence of 0 valued hex values. For example the following is a valid IPv6 address: fe80::2c02:db79
Some IPv6 addresses aren't global and in those cases need a scope ID to describe their context. These get a '%' followed by the scope ID.
For example the previous example with a scope ID of '8' would be: fe80::2c02:db79%8
IPv6 addresses in URIs may appear in the host section of a URI as long as they're enclosed by square brackets. For example:
http://[fe80::2c02:db79]/
. The RFC explicitly notes that there isn't a way to add a scope ID to the IPv6 address in a URI. However a draft document describes adding
scope IDs to IPv6 addresses in URIs. The draft document uses the IPvFuture production from the URI RFC with a 'v1' to add a new
hostname syntax and a '+' instead of a '%' for delimiting the scope id. For example: http://[v1.fe80::2c02:db79+8]/
. However, this is still a draft document, not a final
standard, and I don't know of any system that works this way.
In Windows XPSP2 the IPv6 stack is available but disabled by default. To enable the IPv6 stack, at a command prompt run 'netsh interface ipv6 install'. In Vista IPv6 is the on by default and cannot be turned off, while the IPv4 stack is optional and may be turned off by a command similar to the previous.
Once you have IPv6 on in your OS you can turn on IPv6 for IIS6 or just use IIS7. The address ::1 refers to the local machine.
In some places in Windows like UNC paths, IPv6 addresses aren't allowed. In those cases you can use a Vista DNS IPv6 hack that lives in the OS
name resolution stack that transforms particularly crafted names into IPv6 addresses. Take your IPv6 address, replace the ':'s with '-'s and the '%' with an 's' and then append '.ipv6-literal.net'
to the end. For example: fe80--2c02-db79s8.ipv6-literal.net
. That name will resolve to the same example I've been using in Vista. This transformation occurs inside the system's local
name resolution stack so no DNS servers are involved, although Microsoft does own the ipv6-literal.net domain name.
MSDN describes IPv6 addresses in URIs in Windows and I've described IPv6 addresses in URIs in IE7. File URIs in
IE7 don't support IPv6 addresses. If you want to put a scope ID in a URI in IE7 you use a '%25' to delimit the scope ID and due to a bug you must have at least two digits in your scope ID. So,
to take the previous example: http://[fe80::2c02:db79%2508]/
. Note that its 08 rather than just 8.