modi - Dave's Blog

Search
My timeline on Mastodon

Windows.Web.UI.Interop.WebViewControl localhost access

2018 Jul 25, 5:34

If you're developing with the new Windows.Web.UI.Interop.WebViewControl you may have noticed you cannot navigate to localhost HTTP servers. This is because the WebViewControl's WebView process is a UWP process. All UWP processes by default cannot use the loopback adapter as a security precaution. For development purposes you can allow localhost access using the checknetisolation command line tool on the WebViewControl's package just as you can for any other UWP app. The command should be the following:

checknetisolation loopbackexempt -a -n=Microsoft.Win32WebViewHost_cw5n1h2txyewy

As a warning checknetisolation is not good on errors. If you attempt to add a package but get its package family name wrong, checknetisolation just says OK:

C:\Users\davris>checknetisolation LoopbackExempt -a -n=Microsoft.BingWeather_4.21.2492.0_x86__8wekyb3d8bbwe
OK.
And if you then list the result of the add with the bad name you'll see the following:
[1] -----------------------------------------------------------------
Name: AppContainer NOT FOUND
SID: S-1-15-...

There's also a UI tool for modifying loopback exemption for packages available on GitHub and also one available with Fiddler.

As an additional note, I mentioned above you can try this for development. Do not do this in shipping products as this turns off the security protection for any consumer of the WebViewControl.

PermalinkCommentschecknetisolation loopback security uwp webview win32webview

Tiny browser features: JSBrowser zoom

2018 May 10, 3:49

JSBrowser is a basic browser built as a Win10 JavaScript UWP app around the WebView HTML element. Its fun and relatively simple to implement tiny browser features in JavaScript and in this post I'm implementing zoom.

My plan to implement zoom is to add a zoom slider to the settings div that controls the scale of the WebView element via CSS transform. My resulting zoom change is in git and you can try the whole thing out in my JSBrowser fork.

Slider

I can implement the zoom settings slider as a range type input HTML element. This conveniently provides me a min, max, and step property and suits exactly my purposes. I chose some values that I thought would be reasonable so the browser can scale between half to 3x by increments of one quarter. This is a tiny browser feature after all so there's no custom zoom entry.

<a><label for="webviewZoom">Zoom</label><input type="range" min="50" max="300" step="25" value="100" id="webviewZoom" /></a>

To let the user know this slider is for controlling zoom, I make a label HTML element that says Zoom. The label HTML element has a for attribute which takes the id of another HTML element. This lets the browser know what the label is labelling and lets the browser do things like when the label is clicked to put focus on the slider.

Scale

There are no explicit scale APIs for WebView so to change the size of the content in the WebView we use CSS.

        this.applyWebviewZoom = state => {
const minValue = this.webviewZoom.getAttribute("min");
const maxValue = this.webviewZoom.getAttribute("max");
const scaleValue = Math.max(Math.min(parseInt(this.webviewZoom.value, 10), maxValue), minValue) / 100;

// Use setAttribute so they all change together to avoid weird visual glitches
this.webview.setAttribute("style", [
["width", (100 / scaleValue) + "%"],
["height", "calc(" + (-40 / scaleValue) + "px + " + (100 / scaleValue) + "%)"],
["transform", "scale(" + scaleValue + ")"]
].map(pair => pair[0] + ": " + pair[1]).join("; "));
};

Because the user changes the scale at runtime I accordingly replace the static CSS for the WebView element with the script above to programmatically modify the style of the WebView. I change the style with one setAttribute call to do my best to avoid the browser performing unnecessary work or displaying the WebView in an intermediate and incomplete state. Applying the scale to the element is as simple as adding 'transform: scale(X)' but then there are two interesting problems.

The first is that the size of the WebView is also scaled not just the content within it. To keep the WebView the same effective size so that it still fits properly into our browser UI, we must compensate for the scale in the WebView width and height. Accordingly, you can see that we scale up by scaleValue and then in width and height we divide by the scaleValue.

transform-origin: 0% 0%;

The other issue is that by default the scale transform's origin is the center of the WebView element. This means when scaled up all sides of the WebView would expand out. But when modifying the width and height those apply relative to the upper left of the element so our inverse scale application to the width and height above aren't quite enough. We also have to change the origin of the scale transform to match the origin of the changes to the width and height.

PermalinkCommentsbrowser css-transform javascript JS jsbrowser uwp webview win10

Cdb/Windbg Commands for Runtime Patching

2016 Feb 8, 1:47

You can use conditional breakpoints and debugging commands in windbg and cdb that together can amount to effectively patching a binary at runtime. This can be useful if you have symbols but you can't easily rebuild the binary. Or if the patch is small and the binary requires a great deal of time to rebuild.

Skipping code

If you want to skip a chunk of code you can set a breakpoint at the start address of the code to skip and set the breakpoint's command to change the instruction pointer register to point to the address at the end of the code to skip and go. Voila you're skipping over that code now. For example:

bp 0x6dd6879b "r @eip=0x6dd687c3 ; g"

Changing parameters

You may want to modify parameters or variables and this is simple of course. In the following example a conditional breakpoint ANDs out a bit from dwFlags. Now when we run its as if no one is passing in that flag.

bp wiwi!RelativeCrack "?? dwFlags &= 0xFDFFFFFF;g"

Slightly more difficult is to modify string values. If the new string length is the same size or smaller than the previous, you may be able to modify the string value in place. But if the string is longer or the string memory isn't writable, you'll need a new chunk of memory into which to write your new string. You can use .dvalloc to allocate some memory and ezu to write a string into the newly allocated memory. In the following example I then overwrite the register containing the parameter I want to modify:

.dvalloc 100
ezu 000002a9`d4eb0000 "mfcore.dll"
r rcx = 000002a9`d4eb0000

Calling functions

You can also use .call to actually make new calls to methods or functions. Read more about that on the Old New Thing: Stupid debugger tricks: Calling functions and methods. Again, all of this can be used in a breakpoint command to effectively patch a binary.

PermalinkCommentscdb debug technical windbg

Debugging anecdote - the color transparent black breaks accessibility

2014 May 22, 10:36

Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.

I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.

My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.

Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.

Only some calls to the AppBar WinRT object produced the issue:

        var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView(); 
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.

I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0} to make a color) and I had been mixing both in my tests without realizing there would be a difference. I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0} and found the two structs to be byte wise exactly the same.

On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color: Windows.UI.Colors.black;. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make sense again.

Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.

I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.

At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.

PermalinkCommentsbug debug javascript JS technical windows winrt

Untrusted - a user javascript adventure game

2014 Apr 8, 6:53

The game is to figure out what constrained modifications you must make to beat the game.

PermalinkCommentstechnical programming javascript game

Considerate MessagePort Usage

2013 Aug 7, 7:14
Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.When writing a JavaScript library that uses postMessage and the message event, I must be considerate of other JS code that will be running along side my library. I shouldn't assume I'm the only sender and receiver on a caller provided MessagePort object. This means obviously I should use addEventListener("message" rather than the onmessage property (see related What if two programs did this?). But considering the actual messages traveling over the message channel I have the issue of accidentally processing another libraries messages and having another library accidentally process my own message. I have a few options for playing nice in this regard:
Require a caller provided unique MessagePort
This solves the problem but puts a lot of work on the caller who may not notice nor follow this requirement.
Uniquely mark my messages
To ensure I'm acting upon my own messages and not messages that happen to have similar properties as my own, I place a 'type' property on my postMessage data with a value of a URN unique to me and my JS library. Usually because its easy I use a UUID URN. There's no way someone will coincidentally produce this same URN. With this I can be sure I'm not processing someone else's messages. Of course there's no way to modify my postMessage data to prevent another library from accidentally processing my messages as their own. I can only hope they take similar steps as this and see that my messages are not their own.
Use caller provided MessagePort only to upgrade to new unique MessagePort
I can also make my own unique MessagePort for which only my library will have the end points. This does still require the caller to provide an initial message channel over which I can communicate my new unique MessagePort which means I still have the problems above. However it clearly reduces the surface area of the problem since I only need once message to communicate the new MessagePort.
The best solution is likely all of the above.
Photo is Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.
PermalinkCommentsDOM html javascript messagechannel postMessage programming technical

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

WinRT PropertySet Changed Event Danger

2013 Jul 8, 1:46

The Windows Runtime API Windows.Foundation.Collections.PropertySet class​ is a nice string name to object value map that has a changed event that fires when the contents of the map is modified. Be careful with this event because it fires synchronously from the thread on which the PropertySet was modified. If modified from the UI thread, the UI thread will then wait as it synchronously dispatches the changed event to all listeners which could lead to performance issues or especially from the UI thread deadlock. For instance, deadlock if you have two threads both trying to tell each other about changed events for different PropertySets.

PermalinkCommentsdeadlock development propertyset windows windows-runtime winrt

Zelda Starring Zelda (by Kenna W) Original NES Legend of Zelda...

2013 Mar 18, 2:17


Zelda Starring Zelda (by Kenna W)

Original NES Legend of Zelda ROM modified to swap Zelda and Link: play as Zelda saving Link.

PermalinkCommentsNintendo rom hack programming Zelda legend-of-zelda

DSL modem hack used to infect millions with banking fraud malware | Ars Technica

2012 Oct 1, 6:33

According to the links within this article, although the root URI of the router requires authentication, the /password.cgi URI doesn’t and the resulting returned HTML contains (but does not display) the plaintext of the password, as well as an HTML FORM to modify the password that is exploitable by CSRF.

The attack… infected more than 4.5 million DSL modems… The CSRF (cross-site request forgery) vulnerability allowed attackers to use a simple script to steal passwords required to remotely log in to and control the devices. The attackers then configured the modems to use malicious domain name system servers that caused users trying to visit popular websites to instead connect to booby-trapped imposter sites.

PermalinkCommentstechnical security html router web dns csrf

Stripe CTF - Level 7

2012 Sep 13, 5:00

Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.

Code

@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)

...

def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])

h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True

Issue

The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.

However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.

count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.

Notes

Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.

PermalinkCommentshash internet length-extension security sha1 stripe-ctf technical web

Stripe Web Security CTF Summary

2012 Aug 30, 5:00

I was the 546th person to complete Stripe's web security CTF and again had a ton of fun applying my theoretical knowledge of web security issues to the (semi-)real world. As I went through the levels I thought about what red flags jumped out at me (or should have) that I could apply to future code reviews:

Level Issue Code Review Red Flags
0 Simple SQL injection No encoding when constructing SQL command strings. Constructing SQL command strings instead of SQL API
1 extract($_GET); No input validation.
2 Arbitrary PHP execution No input validation. Allow file uploads. File permissions modification.
3 Advanced SQL injection Constructing SQL command strings instead of SQL API.
4 HTML injection, XSS and CSRF No encoding when constructing HTML. No CSRF counter measures. Passwords stored in plain text. Password displayed on site.
5 Pingback server doesn't need to opt-in n/a - By design protocol issue.
6 Script injection and XSS No encoding while constructing script. Deny list (of dangerous characters). Passwords stored in plain text. Password displayed on site.
7 Length extension attack Custom crypto code. Constructing SQL command string instead of SQL API.
8 Side channel attack Password handling code. Timing attack mitigation too clever.

More about each level in the future.

PermalinkCommentscode-review coding csrf html internet programming script security sql stripe technical web xss

Application Protocols in Windows 8

2012 Jun 12, 4:09
In Windows 8 you can still register a desktop application to handle a particular URI scheme, but now you can also register a Metro Win8 application to handle a particular URI scheme. No more manually modifying the registry - now there's pretty UI in VS to handle this.
PermalinkCommentsapplication-uri programming technical uri windows windows8

Permanently Add Path to System PATH Environment Variable in PowerShell

2012 May 17, 7:16
According to MSDN the proper way to permanently add a path to your system's PATH environment variable is by modifying a registry value. Accordingly this is easily represented in a PowerShell script that first checks if the path provided is already there and otherwise appends it:
param([Parameter(Mandatory = $true)] [string] $Path);
$FullPathOriginal = (gp "HKLM:\System\CurrentControlSet\Control\Session Manager\Environment").Path;
if (!($FullPathOriginal.split(";") | ?{ $_ -like $Path })) {
sp "HKLM:\System\CurrentControlSet\Control\Session Manager\Environment" -name Path -value ($FullPathOriginal + ";" +
$Path);
}
PermalinkCommentspowershell registry technical code programming

Changing System Environment Variables on Windows

2012 Mar 16, 3:13

Is this really the right way to do this? Feels icky:

To programmatically add or modify system environment variables, add them to the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment registry key, then broadcast a WM_SETTINGCHANGE message with lParam set to the string “Environment”.

PermalinkCommentsprogramming techncial registry environment-variable windows

The 'Undue Weight' of Truth on Wikipedia (chronicle.com)

2012 Feb 15, 5:13

Interesting article on an expert attempting to modify an article on Wikipedia.  Sounds like an issue when presented in this fashion, but looking at it from Wikipedia’s perspective, I don’t know how they could do better.

PermalinkCommentstruth wikipedia internet

PowerShell Script Batch File Wrapper

2011 May 22, 7:20

I'm trying to learn and use PowerShell more, but plenty of other folks I know don't use PowerShell. To allow them to use my scripts I use the following cmd.exe batch file to make it easy to call PowerShell scripts. To use, just name the batch file name the same as the corresponding PowerShell script filename and put it in the same directory.

@echo off
if "%1"=="/?" goto help
if "%1"=="/h" goto help
if "%1"=="-?" goto help
if "%1"=="-h" goto help

%systemroot%\system32\windowspowershell\v1.0\powershell.exe -ExecutionPolicy RemoteSigned -Command . %~dpn0.ps1 %*
goto end

:help
%systemroot%\system32\windowspowershell\v1.0\powershell.exe -ExecutionPolicy RemoteSigned -Command help %~dpn0.ps1 -full
goto end

:end

Additionally for PowerShell scripts that modify the current working directory I use the following batch file:

@echo off
if "%1"=="/?" goto help
if "%1"=="/h" goto help
if "%1"=="-?" goto help
if "%1"=="-h" goto help

%systemroot%\system32\windowspowershell\v1.0\powershell.exe -ExecutionPolicy RemoteSigned -Command . %~dpn0.ps1 %*;(pwd).Path 1> %temp%\%~n0.tmp 2> nul
set /p newdir=
PermalinkCommentspowershell technical programming batch file console

pbryan-json-patch - A JSON Media Type for Describing Partial Modifications to JSON Documents

2011 Apr 20, 2:27"JSON (JavaScript Object Notation) Patch defines the media type "application/patch+json", a JSON-based document structure for specifying partial modifications to apply to a JSON document."PermalinkCommentsjson reference patch mime mimetype technical

Capturing HTTPS with FiddlerCore

2011 Apr 6, 10:00

I used FiddlerCore in GeolocMock to edit HTTPS responses and ran into two stumbling blocks that I'll document here. The first is that I didn't check if the Fiddler root cert existed or was installed, which of course is necessary to edit HTTPS traffic. The following is my code where I check for the certs.

    if (!Fiddler.CertMaker.rootCertExists())
{
if (!Fiddler.CertMaker.createRootCert())
{
throw new Exception("Unable to create cert for FiddlerCore.");
}
}

if (!Fiddler.CertMaker.rootCertIsTrusted())
{
if (!Fiddler.CertMaker.trustRootCert())
{
throw new Exception("Unable to install FiddlerCore's cert.");
}
}

The second problem I had (which would have been solved had I read all the sample code first) was that my changes weren't being applied. In my app I only need the BeforeResponse but in order to modify the response I must also sign up for the BeforeRequest event and mark the bBufferResponse flag on the session before the response comes back. For example:

    Fiddler.FiddlerApplication.BeforeRequest += new SessionStateHandler(FiddlerApplication_BeforeRequest);
Fiddler.FiddlerApplication.BeforeResponse += new SessionStateHandler(FiddlerApplication_BeforeResponse);
...
private void FiddlerApplication_BeforeRequest(Session oSession)
{
if (IsInterestingSession(oSession))
{
oSession.bBufferResponse = true;
}
}
PermalinkCommentshttp fiddler technical https geolocmock programming fiddlercore

Database - WEBAPPS

2010 Mar 5, 10:21Document explaining the relationship between the various web storage APIs coming out of HTML 5. To summarize:
Web Storage (aka DOM Storage) - simple key/value pairs API.
WebSimple DB API - now called Indexed Database API.
Indexed Database API and Web SQL Database - competing database APIs.
Application Cache - Storage of HTTP resources for offline apps.
DataCache API - A programmatically modifiable Application Cache.PermalinkCommentshtml html5 standard programming technical wiki w3c database storage web
Older Entries Creative Commons License Some rights reserved.