msdn - Dave's Blog

Search

Windows.Web.UI.Interop.WebViewControl localhost access

2018 Jul 25, 5:34

If you're developing with the new Windows.Web.UI.Interop.WebViewControl you may have noticed you cannot navigate to localhost HTTP servers. This is because the WebViewControl's WebView process is a UWP process. All UWP processes by default cannot use the loopback adapter as a security precaution. For development purposes you can allow localhost access using the checknetisolation command line tool on the WebViewControl's package just as you can for any other UWP app. The command should be the following:

checknetisolation loopbackexempt -a -n=Microsoft.Win32WebViewHost_cw5n1h2txyewy

As a warning checknetisolation is not good on errors. If you attempt to add a package but get its package family name wrong, checknetisolation just says OK:

C:\Users\davris>checknetisolation LoopbackExempt -a -n=Microsoft.BingWeather_4.21.2492.0_x86__8wekyb3d8bbwe
OK.
And if you then list the result of the add with the bad name you'll see the following:
[1] -----------------------------------------------------------------
Name: AppContainer NOT FOUND
SID: S-1-15-...

There's also a UI tool for modifying loopback exemption for packages available on GitHub and also one available with Fiddler.

As an additional note, I mentioned above you can try this for development. Do not do this in shipping products as this turns off the security protection for any consumer of the WebViewControl.

PermalinkCommentschecknetisolation loopback security uwp webview win32webview

Multiple Windows in Win10 JavaScript UWP apps

2018 Mar 10, 1:47

Win10 Changes

In Win8.1 JavaScript UWP apps we supported multiple windows using MSApp DOM APIs. In Win10 we use window.open and window and a new MSApp API getViewId and the previous MSApp APIs are gone:

Win10 Win8.1
Create new window window.open MSApp.createNewView
New window object window MSAppView
viewId MSApp.getViewId(window) MSAppView.viewId

WinRT viewId

We use window.open and window for creating new windows, but then to interact with WinRT APIs we add the MSApp.getViewId API. It takes a window object as a parameter and returns a viewId number that can be used with the various Windows.UI.ViewManagement.ApplicationViewSwitcher APIs.

Delaying Visibility

Views in WinRT normally start hidden and the end developer uses something like TryShowAsStandaloneAsync to display the view once it is fully prepared. In the web world, window.open shows a window immediately and the end user can watch as content is loaded and rendered. To have your new windows act like views in WinRT and not display immediately we have added a window.open option. For example
let newWindow = window.open("https://example.com", null, "msHideView=yes");

Primary Window Differences

The primary window that is initially opened by the OS acts differently than the secondary windows that it opens:

Primary Secondary
window.open Allowed Disallowed
window.close Close app Close window
Navigation restrictions ACUR only No restrictions

The restriction on secondary windows such that they cannot open secondary windows could change in the future depending on feedback.

Same Origin Communication Restrictions

Lastly, there is a very difficult technical issue preventing us from properly supporting synchronous, same-origin, cross-window, script calls. That is, when you open a window that's same origin, script in one window is allowed to directly call functions in the other window and some of these calls will fail. postMessage calls work just fine and is the recommended way to do things if that's possible for you. Otherwise we continue to work on improving this.

PermalinkComments

MSApp.getHtmlPrintDocumentSourceAsync - JavaScript UWP app printing

2017 Oct 11, 5:49

The documentation for printing in JavaScript UWP apps is out of date as it all references MSApp.getHtmlPrintDocumentSource but that method has been replaced by MSApp.getHtmlPrintDocumentSourceAsync since WinPhone 8.1.

Background

Previous to WinPhone 8.1 the WebView's HTML content ran on the UI thread of the app. This is troublesome for rendering arbitrary web content since in the extreme case the JavaScript of some arbitrary web page might just sit in a loop and never return control to your app's UI. With WinPhone 8.1 we added off thread WebView in which the WebView runs HTML content on a separate UI thread.

Off thread WebView required changing our MSApp.getHtmlPrintDocumentSource API which could no longer synchronously produce an HtmlPrintDocumentSource. With WebViews running on their own threads it may take some time for them to generate their print content for the HtmlPrintDocumentSource and we don't want to hang the app's UI thread in the interim. So the MSApp.getHtmlPrintDocumentSource API was replaced with MSApp.getHtmlPrintDocumentSourceAsync which returns a promise the resolved value of which is the eventual HtmlPrintDocumentSource.

Sample

However, the usage of the API is otherwise unchanged. So in sample code you see referencing MSApp.getHtmlPrintDocumentSource the sample code is still reasonable but you need to call MSApp.getHtmlPrintDocumentSourceAsync instead and wait for the promise to complete. For example the PrintManager docs has an example implementing a PrintTaskRequested event handler in a JavaScript UWP app.

    function onPrintTaskRequested(printEvent) {    
var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
args.setSource(MSApp.getHtmlPrintDocumentSource(document));
});

Instead we need to obtain a deferral in the event handler so we can asynchronously wait for getHtmlPrintDocumentSourceAsync to complete:

    function onPrintTaskRequested(printEvent) {    
var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
const deferral = args.getDeferral();
MSApp.getHtmlPrintDocumentSourceAsync(document).then(htmlPrintDocumentSource => {
args.setSource(htmlPrintDocumentSource);
deferral.complete();
}, error => {
console.error("Error: " + error.message + " " + error.stack);
deferral.complete();
});
});
PermalinkCommentsjavascript MSApp printing programming uwp webview win10 windows

Win10 UWP WebView AddWebAllowedObject details

2017 Sep 4, 3:09

The x-ms-webview HTML element has the void addWebAllowedObject(string name, any value) method and the webview XAML element has the void AddWebAllowedObject(String name, Object value) method. The object parameter is projected into the webview’s top-level HTML document’s script engine as a new property on the global object with property name set to the name parameter. It is not injected into the current document but rather it is projected during initialization of the next top-level HTML document to which the webview navigates.

Lifetime

If AddWebAllowedObject is called during a NavigationStarting event handler the object will be injected into the document resulting from the navigation corresponding to that event.

If AddWebAllowedObject is called outside of the NavigationStarting event handler it will apply to the navigation corresponding to the next explicit navigate method called on the webview or the navigation corresponding to the next NavigationStarting event handler that fires, whichever comes first.

To avoid this potential race, you should use AddWebAllowedObject in one of two ways: 1. During a NavigationStarting event handler, 2. Before calling a Navigate method and without returning to the main loop.

If called both before calling a navigate method and in the NavigationStarting event handler then the result is the aggregate of all those calls.

If called multiple times for the same document with the same name the last call wins and the previous are silently ignored.

If AddWebAllowedObject is called for a navigation and that navigation fails or redirects to a different URI, the AddWebAllowedObject call is silently ignored.

After successfully adding an object to a document, the object will no longer be projected once a navigation to a new document occurs.

WinRT access

If AddWebAllowedObject is called for a document with All WinRT access then projection will succeed and the object will be added.

If AddWebAllowedObject is called for a document which has a URI which has no declared WinRT access via ApplicationContentUriRules then Allow for web only WinRT access is given to that document.

If the document has Allow for web only WinRT access then projection will succeed only if the object’s runtimeclass has the Windows.Foundation.Metadata.AllowForWeb metadata attribute.

Object requirements

The object must implement the IAgileObject interface. Because the XAML and HTML webview elements run on ASTA view threads and the webview’s content’s JavaScript thread runs on another ASTA thread a developer should not create their non-agile runtimeclass on the view thread. To encourage end developers to do this correctly we require the object implements IAgileObject.

Property name

The name parameter must be a valid JavaScript property name, otherwise the call will fail silently. If the name is already a property name on the global object, that property is overwritten if the property is configurable. Non-configurable properties on the global object are not overwritten and the AddWebAllowedObject call fails silently. On success, the projected property is writable, configurable, and enumerable.

Errors

Some errors as described above fail silently. Other issues, such as lack of IAgileObject or lack of the AllowForWeb attribute result in an error in the JavaScript developer console.

PermalinkComments

Application Content URI Rules wildcard syntax

2017 May 31, 4:48

Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.

Rules

You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.

The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.

Asterisk

Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.

Host

For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.

Path

For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c

Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.

If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.

As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.

PermalinkCommentsapplication-content-uri-rules programming windows windows-store

Parsing WinMD with .NET reflection APIs

2016 Nov 2, 6:13

Parsing WinMD files, the containers of WinRT API metadata, is relatively simple using the appropriate .NET reflection APIs. However, figuring out which reflection APIs to use is not obvious. I've got a completed C sharp class parsing WinMD files that you can check out for reference.

Use System.Reflection.Assembly.ReflectionOnlyLoad to load the WinMD file. Don't use the normal load methods because the WinMD files contain only metadata. This will load up info about APIs defined in that WinMD, but any references to types outside of that WinMD including types found in the normal OS system WinMD files must be resolved by the app code via the System.Reflection.InteropServices.WindowsRuntimeMetadata.ReflectionOnlyNamespaceResolve event.

In this event handler you must resolve the unknown namespace reference by adding an assembly to the NamespaceResolveEventArgs's ResolvedAssemblies property. If you're only interested in OS system WinMD files you can use System.Reflection.InteropServices.WindowsRuntimeMetadata.ResolveNamespace to turn a namespace into the expected OS system WinMD path and turn that path into an assembly with ReflectionOnlyLoad.

PermalinkComments.net code programming winmd winrt

Cdb/Windbg Commands for Runtime Patching

2016 Feb 8, 1:47

You can use conditional breakpoints and debugging commands in windbg and cdb that together can amount to effectively patching a binary at runtime. This can be useful if you have symbols but you can't easily rebuild the binary. Or if the patch is small and the binary requires a great deal of time to rebuild.

Skipping code

If you want to skip a chunk of code you can set a breakpoint at the start address of the code to skip and set the breakpoint's command to change the instruction pointer register to point to the address at the end of the code to skip and go. Voila you're skipping over that code now. For example:

bp 0x6dd6879b "r @eip=0x6dd687c3 ; g"

Changing parameters

You may want to modify parameters or variables and this is simple of course. In the following example a conditional breakpoint ANDs out a bit from dwFlags. Now when we run its as if no one is passing in that flag.

bp wiwi!RelativeCrack "?? dwFlags &= 0xFDFFFFFF;g"

Slightly more difficult is to modify string values. If the new string length is the same size or smaller than the previous, you may be able to modify the string value in place. But if the string is longer or the string memory isn't writable, you'll need a new chunk of memory into which to write your new string. You can use .dvalloc to allocate some memory and ezu to write a string into the newly allocated memory. In the following example I then overwrite the register containing the parameter I want to modify:

.dvalloc 100
ezu 000002a9`d4eb0000 "mfcore.dll"
r rcx = 000002a9`d4eb0000

Calling functions

You can also use .call to actually make new calls to methods or functions. Read more about that on the Old New Thing: Stupid debugger tricks: Calling functions and methods. Again, all of this can be used in a breakpoint command to effectively patch a binary.

PermalinkCommentscdb debug technical windbg

JavaScript Types and WinRT Types

2016 Jan 21, 5:35

MSDN covers the topic of JavaScript and WinRT type conversions provided by Chakra (JavaScript Representation of Windows Runtime Types and Considerations when Using the Windows Runtime API), but for the questions I get about it I’ll try to lay out some specifics of that discussion more plainly. I’ve made a TL;DR JavaScript types and WinRT types summary table.

WinRT Conversion JavaScript
Struct ↔️ JavaScript object with matching property names
Class or interface instance JavaScript object with matching property names
Windows.Foundation.Collections.IPropertySet JavaScript object with arbitrary property names
Any DOM object

Chakra, the JavaScript engine powering the Edge browser and JavaScript Windows Store apps, does the work to project WinRT into JavaScript. It is responsible for, among other things, converting back and forth between JavaScript types and WinRT types. Some basics are intuitive, like a JavaScript string is converted back and forth with WinRT’s string representation. For other basic types check out the MSDN links at the top of the page. For structs, interface instances, class instances, and objects things are more complicated.

A struct, class instance, or interface instance in WinRT is projected into JavaScript as a JavaScript object with corresponding property names and values. This JavaScript object representation of a WinRT type can be passed into other WinRT APIs that take the same underlying type as a parameter. This JavaScript object is special in that Chakra keeps a reference to the underlying WinRT object and so it can be reused with other WinRT APIs.

However, if you start with plain JavaScript objects and want to interact with WinRT APIs that take non-basic WinRT types, your options are less plentiful. You can use a plain JavaScript object as a WinRT struct, so long as the property names on the JavaScript object match the WinRT struct’s. Chakra will implicitly create an instance of the WinRT struct for you when you call a WinRT method that takes that WinRT struct as a parameter and fill in the WinRT struct’s values with the values from the corresponding properties on your JavaScript object.

// C# WinRT component
public struct ExampleStruct
{
public string String;
public int Int;
}

public sealed class ExampleStructContainer
{
ExampleStruct value;
public void Set(ExampleStruct value)
{
this.value = value;
}

public ExampleStruct Get()
{
return this.value;
}
}

// JS code
var structContainer = new ExampleWinRTComponent.ExampleNamespace.ExampleStructContainer();
structContainer.set({ string: "abc", int: 123 });
console.log("structContainer.get(): " + JSON.stringify(structContainer.get()));
// structContainer.get(): {"string":"abc","int":123}

You cannot have a plain JavaScript object and use it as a WinRT class instance or WinRT interface instance. Chakra does not provide such a conversion even with ES6 classes.

You cannot take a JavaScript object with arbitrary property names that are unknown at compile time and don’t correspond to a specific WinRT struct and pass that into a WinRT method. If you need to do this, you have to write additional JavaScript code to explicitly convert your arbitrary JavaScript object into an array of property name and value pairs or something else that could be represented in WinRT.

However, the other direction you can do. An instance of a Windows.Foundation.Collections.IPropertySet implementation in WinRT is projected into JavaScript as a JavaScript object with property names and values corresponding to the key and value pairs in the IPropertySet. In this way you can project a WinRT object as a JavaScript object with arbitrary property names and types. But again, the reverse is not possible. Chakra will not convert an arbitrary JavaScript object into an IPropertySet.

// C# WinRT component
public sealed class PropertySetContainer
{
private Windows.Foundation.Collections.IPropertySet otherValue = null;

public Windows.Foundation.Collections.IPropertySet other
{
get
{
return otherValue;
}
set
{
otherValue = value;
}
}
}

public sealed class PropertySet : Windows.Foundation.Collections.IPropertySet
{
private IDictionary map = new Dictionary();

public PropertySet()
{
map.Add("abc", "def");
map.Add("ghi", "jkl");
map.Add("mno", "pqr");
}
// ... rest of PropertySet implementation is simple wrapper around the map member.


// JS code
var propertySet = new ExampleWinRTComponent.ExampleNamespace.PropertySet();
console.log("propertySet: " + JSON.stringify(propertySet));
// propertySet: {"abc":"def","ghi":"jkl","mno":"pqr"}

var propertySetContainer = new ExampleWinRTComponent.ExampleNamespace.PropertySetContainer();
propertySetContainer.other = propertySet;
console.log("propertySetContainer.other: " + JSON.stringify(propertySetContainer.other));
// propertySetContainer.other: {"abc":"def","ghi":"jkl","mno":"pqr"}

try {
propertySetContainer.other = { "123": "456", "789": "012" };
}
catch (e) {
console.error("Error setting propertySetContainer.other: " + e);
// Error setting propertySetContainer.other: TypeError: Type mismatch
}

There’s also no way to implicitly convert a DOM object into a WinRT type. If you want to write third party WinRT code that interacts with the DOM, you must do so indirectly and explicitly in JavaScript code that is interacting with your third party WinRT. You’ll have to extract the information you want from your DOM objects to pass into WinRT methods and similarly have to pass messages out from WinRT that say what actions the JavaScript should perform on the DOM.

PermalinkCommentschakra development javascript winrt

Retweet of JustRogDigiTec

2015 Mar 18, 10:48
Xpath in #EdgeHTML using CSS selectors and WGX (Wicked Good XPath) http://blogs.msdn.com/b/ie/archive/2015/03/19/improving-interoperability-with-dom-l3-xpath.aspx … The tech here is amazing. #ICodeReviewedThat
PermalinkComments

Retweet of ericlaw

2015 Jan 27, 11:08
I recently got a new Authenticode cert to continue to sign my code. It wasn't hard-- you should be signing too! http://blogs.msdn.com/b/ieinternals/archive/2015/01/28/authenticode-in-2015-signcode-with-certificate-on-etoken.aspx …
PermalinkComments

Image Manipulation in PowerShell - Windows PowerShell Blog - Site Home - MSDN Blogs

2015 Jan 5, 1:20

Great blog post and set of powershell scripts for manipulating images.

PermalinkCommentsprogramming coding powershell

Debugging anecdote - the color transparent black breaks accessibility

2014 May 22, 10:36

Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.

I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.

My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.

Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.

Only some calls to the AppBar WinRT object produced the issue:

        var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView(); 
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.

I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0} to make a color) and I had been mixing both in my tests without realizing there would be a difference. I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0} and found the two structs to be byte wise exactly the same.

On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color: Windows.UI.Colors.black;. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make sense again.

Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.

I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.

At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.

PermalinkCommentsbug debug javascript JS technical windows winrt

Debugging LoadLibrary Failures - Junfeng Zhang's Windows Programming Notes - Site Home - MSDN Blogs

2014 Feb 25, 2:22

How to turn on debug logging for LoadLibrary to diagnose failures. For example, see where in the dependency graph of a DLL LoadLibrary ran into issues.

PermalinkCommentstechnical win32 windows debugging loadlibrary

Moving PowerShell data into Excel

2013 Aug 15, 10:04
PowerShell nicely includes ConvertTo-CSV and ConvertFrom-CSV which allow you to serialize and deserialize your PowerShell objects to and from CSV. Unfortunately the CSV produced by ConvertTo-CSV is not easily opened by Excel which expects by default different sets of delimiters and such. Looking online you'll find folks who recommend using automation via COM to create a new Excel instance and copy over the data in that fashion. This turns out to be very slow and impractical if you have large sets of data. However you can use automation to open CSV files with not the default set of delimiters. So the following isn't the best but it gets Excel to open a CSV file produced via ConvertTo-CSV and is faster than the other options:
Param([Parameter(Mandatory=$true)][string]$Path);

$excel = New-Object -ComObject Excel.Application

$xlWindows=2
$xlDelimited=1 # 1 = delimited, 2 = fixed width
$xlTextQualifierDoubleQuote=1 # 1= doublt quote, -4142 = no delim, 2 = single quote
$consequitiveDelim = $False;
$tabDelim = $False;
$semicolonDelim = $False;
$commaDelim = $True;
$StartRow=1
$Semicolon=$True

$excel.visible=$true
$excel.workbooks.OpenText($Path,$xlWindows,$StartRow,$xlDelimited,$xlTextQualifierDoubleQuote,$consequitiveDelim,$tabDelim,$semicolonDelim, $commaDelim);
See Workbooks.OpenText documentation for more information.
PermalinkCommentscsv excel powershell programming technical

Considerate MessagePort Usage

2013 Aug 7, 7:14
Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.When writing a JavaScript library that uses postMessage and the message event, I must be considerate of other JS code that will be running along side my library. I shouldn't assume I'm the only sender and receiver on a caller provided MessagePort object. This means obviously I should use addEventListener("message" rather than the onmessage property (see related What if two programs did this?). But considering the actual messages traveling over the message channel I have the issue of accidentally processing another libraries messages and having another library accidentally process my own message. I have a few options for playing nice in this regard:
Require a caller provided unique MessagePort
This solves the problem but puts a lot of work on the caller who may not notice nor follow this requirement.
Uniquely mark my messages
To ensure I'm acting upon my own messages and not messages that happen to have similar properties as my own, I place a 'type' property on my postMessage data with a value of a URN unique to me and my JS library. Usually because its easy I use a UUID URN. There's no way someone will coincidentally produce this same URN. With this I can be sure I'm not processing someone else's messages. Of course there's no way to modify my postMessage data to prevent another library from accidentally processing my messages as their own. I can only hope they take similar steps as this and see that my messages are not their own.
Use caller provided MessagePort only to upgrade to new unique MessagePort
I can also make my own unique MessagePort for which only my library will have the end points. This does still require the caller to provide an initial message channel over which I can communicate my new unique MessagePort which means I still have the problems above. However it clearly reduces the surface area of the problem since I only need once message to communicate the new MessagePort.
The best solution is likely all of the above.
Photo is Sharing by leezie5. Two squirrels sharing food hanging from a bird feeder. Used under Creative Commons license Attribution-NonCommercial-NoDerivs 2.0 Generic.
PermalinkCommentsDOM html javascript messagechannel postMessage programming technical

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

WinRT PropertySet Changed Event Danger

2013 Jul 8, 1:46

The Windows Runtime API Windows.Foundation.Collections.PropertySet class​ is a nice string name to object value map that has a changed event that fires when the contents of the map is modified. Be careful with this event because it fires synchronously from the thread on which the PropertySet was modified. If modified from the UI thread, the UI thread will then wait as it synchronously dispatches the changed event to all listeners which could lead to performance issues or especially from the UI thread deadlock. For instance, deadlock if you have two threads both trying to tell each other about changed events for different PropertySets.

PermalinkCommentsdeadlock development propertyset windows windows-runtime winrt

Words with Hints Windows 8 App Development Notes

2013 Jul 4, 1:00

My second completed app for the Windows Store was Words with Hints a companion to Words with Friends or other Scrabble like games that gives you *ahem* hints. You provide your tiles and optionally letters placed in a line on the board and Words with Hints gives you word options.

I wrote this the first time by building a regular expression to check against my dictionary of words which made for a slow app on the Surface. In subsequent release of the app I now spawn four web workers (one for each of the Surface's cores) each with its own fourth of my dictionary. Each fourth of the dictionary is a trie which makes it easy for me to discard whole chunks of possible combinations of Scrabble letters as I walk the tree of possibilities.

The dictionaries are large and takes a noticeable amount of time to load on the Surface. The best performing mechanism I found to load them is as JavaScript source files that simply define their portion of the dictionary on the global object and synchronously (only on the worker so not blocking the UI thread). Putting them into .js files means they take advantage of bytecode caching making them load faster. However because the data is mostly strings and not code there is a dramatic size increase when the app is installed. The total size of the four dictionary .js files is about 44Mb. The bytecode cache for the dictionary files is about double that 88Mb meaning the dictionary plus the bytecode cache is 132Mb.

To handle the bother of postMessage communication and web workers this was the first app in which I used my promise MessagePort project which I'll discuss more in the future.

This is the first app in which I used the Microsoft Ad SDK. It was difficult to find the install for the SDK and difficult to use their website, but once setup, the Ad SDK was easy to import into VS and easy to use in my app.

PermalinkCommentsdevelopment technical windows windows-store words-with-hints

Application Protocols in Windows 8

2012 Jun 12, 4:09
In Windows 8 you can still register a desktop application to handle a particular URI scheme, but now you can also register a Metro Win8 application to handle a particular URI scheme. No more manually modifying the registry - now there's pretty UI in VS to handle this.
PermalinkCommentsapplication-uri programming technical uri windows windows8

Testing 3 million hyperlinks, lessons learned

2012 Jun 7, 2:42

Won’t someone think of the URIs?!  At some point in the not too distant past, MSDN changed how you link to documentation and broke all existing links.  This included some of links in documents on MSDN.

PermalinkCommentsuri technical http programming web
Older Entries Creative Commons License Some rights reserved.