If you're developing with the new Windows.Web.UI.Interop.WebViewControl you may have noticed you cannot navigate to localhost HTTP servers. This is because the WebViewControl's WebView process is a UWP process. All UWP processes by default cannot use the loopback adapter as a security precaution. For development purposes you can allow localhost access using the checknetisolation command line tool on the WebViewControl's package just as you can for any other UWP app. The command should be the following:
checknetisolation loopbackexempt -a -n=Microsoft.Win32WebViewHost_cw5n1h2txyewy
As a warning checknetisolation is not good on errors. If you attempt to add a package but get its package family name wrong, checknetisolation just says OK:
C:\Users\davris>checknetisolation LoopbackExempt -a -n=Microsoft.BingWeather_4.21.2492.0_x86__8wekyb3d8bbwe
OK.
And if you then list the result of the add with the
bad name you'll see the following:
[1] -----------------------------------------------------------------
Name: AppContainer NOT FOUND
SID: S-1-15-...
There's also a UI tool for modifying loopback exemption for packages available on GitHub and also one available with Fiddler.
As an additional note, I mentioned above you can try this for development. Do not do this in shipping products as this turns off the security protection for any consumer of the WebViewControl.
Folks familiar with JavaScript UWP apps in Win10 have often been confused by what PWAs in Win10 actually are. TLDR: PWAs in Win10 are simply JavaScript UWP apps. The main difference between these JS UWP Apps and our non-PWA JS UWP apps are our target end developer audience, and how we get Win10 PWAs into the Microsoft Store. See this Win10 blog post on PWAs on Win10 for related info.
On the web a subset of web sites are web apps. These are web sites that have app like behavior - that is a user might call it an app like Outlook, Maps or Gmail. And they may also have a W3C app manifest.
A subset of web apps are progressive web apps. Progressive web apps are web apps that have a W3C app manifest and a service worker. Various OSes are beginning to support PWAs as first class apps on their platform. This is true for Win10 as well in which PWAs are run as a WWA.
In Win10 a WWA (Windows Web App) is an unofficial term for a JavaScript UWP app. These are UWP apps so they have an AppxManifest.xml, they are packaged in an Appx package, they run in an App Container, they use WinRT APIs, and are installed via the Microsoft Store. Specific to WWAs though, is that the AppxManifest.xml specifies a StartPage attribute identifying some HTML content to be used as the app. When the app is activated the OS will create a WWAHost.exe process that hosts the HTML content using the EdgeHtml rendering engine.
Within that we have a notion of a packaged web app and an HWA (hosted web app). There's no real technical distinction for the end developer between these two. The only real difference is whether the StartPage identifies remote HTML content on the web (HWA), or packaged HTML content from the app's appx package (packaged web app). An end developer may create an app that is a mix of these as well, with HTML content in the package and HTML content from the web. These terms are more like ends on a continuum and identifying two different developer scenarios since the underlying technical aspect is pretty much identical.
Win10 PWAs are simply HWAs that specify a StartPage of a URI for a PWA on the web. These are still JavaScript UWP apps with all the same behavior and abilities as other UWP apps. We have two ways of getting PWAs into the Microsoft Store as Win10 PWAs. The first is PWA Builder which is a tool that helps PWA end developers create and submit to the Microsoft Store a Win10 PWA appx package. The second is a crawler that runs over the web looking for PWAs which we convert and submit to the Store using an automated PWA Builder-like tool to create a Win10 PWA from PWAs on the web (see Welcoming PWAs to Win10 for more info). In both cases the conversion involves examining the PWAs W3C app manifest and producing a corresponding AppxManifest.xml. Not all features supported by AppxManifest.xml are also available in the W3c app manifest. But the result of PWA Builder can be a working starting point for end developers who can then update the AppxManifest.xml as they like to support features like share targets or others not available in W3C app manifests.
JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.
The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.
This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.
If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.
The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.
When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target.
If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated
event is fired (more details on
the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current
page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing
the WebUIApplication activated event.
Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
MSApp.pageHandlesAllApplicationActivations(true)
API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
does require of course that all of your pages all handle all activation kinds about which any part of your app cares.
Application Content URI Rules (ACUR from now on) defines the bounds on the web that make up a Microsoft Store application. The previous blog post discussed the syntax of the Rule's Match attribute and this time I'll write about the interactions between the Rules elements.
A single ApplicationContentUriRules element may have up to 100 Rule child elements. When determining if a navigation URI matches any of the ACUR the last Rule in the list with a matching match wildcard URI is used. If that Rule is an include rule then the navigation URI is determined to be an application content URI and if that Rule is an exclude rule then the navigation rule is not an application content URI. For example:
Rule Type='include' Match='https://example.com/'/
Rule Type='exclude' Match='https://example.com/'/
Given the above two rules in that order, the navigation URI https://example.com/ is not an application content URI because the last matching rule is the exclude rule. Reverse the order of the rules and get the opposite result.
In addition to determining if a navigation URI is application content or not, a Rule may also confer varying levels of WinRT access via the optional WindowsRuntimeAccess attribute which may be set to 'none', 'allowForWeb', or 'all'. If a navigation URI matches multiple different include rules only the last rule is applied even as it applies to the WindowsRuntimeAccess attribute. For example:
Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='none'/
Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='all'/
Given the above two rules in that order, the navigation URI https://example.com/ will have access to all WinRT APIs because the last matching rule wins. Reverse the rule order and the navigation URI https://example.com/ will have no access to WinRT. There is no summation or combining of multiple matching rules - only the last matching rule wins.
Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.
You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.
The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.
Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.
For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.
For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c
Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.
If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.
As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.
A reminder that those Doritos you love are trash:
Shortly after Disneyland opened in 1955, the founder of Frito-Lay got permission from Walt Disney to open a restaurant in Frontierland with a Mexican-ish theme. “Casa de Fritos” was, unsurprisingly, all about the Fritos. Customers got free Fritos, and Fritos were incorporated into many of the dishes. Fritos were dispensed by an animatronic vending machine that featured the terrifying “Frito Kid”asking his assistant “Klondike” to bring the bag up from a mineshaft. I guess the conceit is that Fritos were mined by Forty-Niners?
Casa de Fritos contracted their tortilla production to a company called Alex Foods. One of the salesmen from Alex Foods, making a delivery to Casa de Fritos, noticed stale tortillas in the garbage and gave the cook a little tip: fry them and sell them as chips instead of throwing them away. Casa de Fritos began making these fried, seasoned chips to enormous success, but didn’t report this new menu item to the Frito-Lay company.
Eventually Frito-Lay found out what they were doing with the chips, packaged them, and sold them by the truckload. See, dumpster diving works out sometimes!
I wanted to ensure that my switch statement in my implementation of IInternetSecurityManager::ProcessURLAction had a case for every possible documented URLACTION. I wrote the following short command line sequence to see the list of all URLACTIONs in the SDK header file not found in my source file:
grep URLACTION urlmon.idl | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > allURLACTIONs.txt
grep URLACTION MySecurityManager.cpp | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > myURLACTIONs.txt
comm -23 allURLACTIONs.txt myURLACTIONs.txt
I'm
not a sed expert so I had to read the sed documentation, and I heard about comm from Kris Kowal's blog which happilly was in the Win32 GNU tools pack I
already run.
But in my effort to learn and use PowerShell I found the following similar command line:
diff
(more urlmon.idl | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
(more MySecurityManager.cpp | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
In
the PowerShell version I can skip the temporary files which is nice. 'diff' is mapped to 'compare-object' which seems similar to comm but with no parameters to filter out the different streams
(although this could be done more verbosely with the ?{ } filter syntax). In PowerShell uniq functionality is built into sort. The builtin -cmatch operator (c is for case sensitive) to do regexp is
nice plus the side effect of generating the $matches variable with the regexp results.
Irritatingly out of line with what their commercials say, in my area Comcast, under the covers of the national broadcast digital switch, is sneaking in their own switch to digital, moving channels above 30 to their own digital format. Previously, I had Windows 7 Media Center running on a PC with a Hauppauge PVR500 which can decode two television signals at once setup to record shows I like. The XBox 360 works great as a Media Center client letting me easily watch the recorded shows over my home network on my normal TV.
Unfortunately with Comcast's change, now one needs a cable box or a Comcast digital to analog converter in order to view their signal, but Comcast is offering up to two free converters for those who'd like them. The second of my two free converters I hooked up to the Media Center PC and I got the IR Blaster that came with my Hauppauge out of the garage. I plugged in the USB IR Blaster to my PC, connected one of the IR transmitters to the 1st port on the IR Blaster, and sat the IR transmitter next to the converter's IR receiver. I went through the Media Center TV setup again and happily it was able to figure out how to correctly change the channel on the converter. So I can record now, however:
sequelguy posted a photo:
James Bond's jetpack found at the Three Lions pub in Redmond, WA
My parents visited this past weekend, met Sarah's parents, saw our house, and met our bunny. On Friday we went to BluWater in Kirkland which was pretty busy and the service was slower and slightly worse than we usually find. Saturday my parents helped us with our yard quite a bit and for dinner we went to the Icon Grill with Sarah's parents. I had forgotten how much I enjoy the food at the Icon Grill - I had the very tasty meat loaf. Dinner went well and afterward we stopped at the Three Lions pub in Redmond. On all previous occasions I had tried to go in there the place was packed for a soccer game. This night however there was a man with a guitar, singing and it wasn't nearly as packed. I also found that near the bathrooms on the wall is what looks to be James Bond's jetpack.
On Sunday we went out to see Jeannie and Carl and see the renovations to Jeannie's place. We met up with them at the Fremont Market to which I hadn't been previously, and had a look around there before going back to Jeannie's to see the lovely work they'd done to her place. For dinner my parents took us out to the Melting Pot for my approaching birthday. It was fun having my parents up and I look forward to the next time they're here.