The documentation for printing in JavaScript UWP apps is out of date as it all references MSApp.getHtmlPrintDocumentSource but that method has been replaced by MSApp.getHtmlPrintDocumentSourceAsync since WinPhone 8.1.
Previous to WinPhone 8.1 the WebView's HTML content ran on the UI thread of the app. This is troublesome for rendering arbitrary web content since in the extreme case the JavaScript of some arbitrary web page might just sit in a loop and never return control to your app's UI. With WinPhone 8.1 we added off thread WebView in which the WebView runs HTML content on a separate UI thread.
Off thread WebView required changing our MSApp.getHtmlPrintDocumentSource API which could no longer synchronously produce an HtmlPrintDocumentSource. With WebViews running on their own threads it may take some time for them to generate their print content for the HtmlPrintDocumentSource and we don't want to hang the app's UI thread in the interim. So the MSApp.getHtmlPrintDocumentSource API was replaced with MSApp.getHtmlPrintDocumentSourceAsync which returns a promise the resolved value of which is the eventual HtmlPrintDocumentSource.
However, the usage of the API is otherwise unchanged. So in sample code you see referencing MSApp.getHtmlPrintDocumentSource the sample code is still reasonable but you need to call MSApp.getHtmlPrintDocumentSourceAsync instead and wait for the promise to complete. For example the PrintManager docs has an example implementing a PrintTaskRequested event handler in a JavaScript UWP app.
function onPrintTaskRequested(printEvent) {
var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
args.setSource(MSApp.getHtmlPrintDocumentSource(document));
});
Instead we need to obtain a deferral in the event handler so we can asynchronously wait for getHtmlPrintDocumentSourceAsync to complete:
function onPrintTaskRequested(printEvent) {
var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {
const deferral = args.getDeferral();
MSApp.getHtmlPrintDocumentSourceAsync(document).then(htmlPrintDocumentSource => {
args.setSource(htmlPrintDocumentSource);
deferral.complete();
}, error => {
console.error("Error: " + error.message + " " + error.stack);
deferral.complete();
});
});
TL;DR: Keep your C++ class member declaration order the same as your constructor member initializers order.
C++ guarantees that the member initializers in a constructor are called in order. However the order in which they are called is the order in which the associated members are declared in the class, not the order in which they appear in the member initializer list. For instance, take the following code. I would have thought it would print "three, one, two", but in fact it prints, "one, two, three".
#include "stdafx.h"
#include
class PrintSomething {
public:
PrintSomething(const wchar_t *name) { std::wcout << name << std::endl; }
};
class NoteOrder {
public:
// This order doesn't matter.
NoteOrder() : three(L"three"), one(L"one"), two(L"two") { }
PrintSomething one;
PrintSomething two;
PrintSomething three;
};
int wmain(const int argc, const wchar_t* argv[])
{
NoteOrder note; // Prints one, two, three, not three, one, two!
return 0;
}
Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.
@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)
...
def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])
h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True
The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.
However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the
following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new
request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.
Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.
(via Descriptive Camera)
A digital camera sends photos to Mechanical Turk service to generate a textual description and print the result on a thermal printer. Thus a camera that prints out a textual description of what you photographed.
Free Universal Construction Kit is a set of 3D models you can print on a 3D printer that allow you to connect Lego to Duplo to Lincoln Logs, etc.
perl -lne ‘(1x$_) =~ /^1?$|^(11+?)\1+$/ || print “$_ is prime”’
“TechCrunch and others are reporting that a program called “Carrier IQ” that comes pre-installed on Sprint phones has some pretty amazing spyware capabilities, right down to keylogging everything you do on the phone.”