More than 90% of Americans believe that the US government is unduly influenced by money, and the Mayday.US super PAC is raising $5M to fund the election campaigns of politicians who’ll pledge to dismantle super PACs and enact other campaign finance reforms. They raised more than $1M in 30 days last month, and this month, the goal is $5M. It’s the brainchild of Lawrence Lessig, who’s going to run prototype the project by running five electoral campaigns in 2014, and use the lessons of those projects to win enough anti-corruption seats in 2016 to effect real change.
Again, I’m not able to contribute to Mayday.US, because I’m a Canadian and Briton. But I ask my American friends to put in $10, and promise that I’ll put CAD1000 into any comparable Canadian effort and/or £1000 into a comparable UK effort. We all win when countries embrace evidence-based policy guided by doing what’s best for its citizens, rather than lining the pockets of corrupting multinationals.
Please reblog!
JS NICE | Software Reliability Lab in ETH
JS NICE has indexed over 10,000 JavaScript projects from GitHub and then probabilistically infers newly suggested names and types for all of the local variables and function parameters of new JS.
I've put a new app on the Windows Store: Cloud Share. It connects the web to your Windows 8 share charm.
I did the development on GitHub and quite enjoyed myself. I wasn't sure I liked the game-ification of development in GitHub's dashboard showing you your longest development streak in days. However I realized that it encourages me to do work on my personal project and anything that aids in holding my attention on and helping me finish these projects is a good thing.
Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.
I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.
My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.
Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.
Only some calls to the AppBar WinRT object produced the issue:
var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView();
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just
setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set
caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.
I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS
object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0}
to make a color) and I had been mixing both in my tests without realizing there would be a difference.
I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0}
and
found the two structs to be byte wise exactly the same.
On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color:
Windows.UI.Colors.black;
. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these
predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my
C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make
sense again.
Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.
I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.
At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.
A physical big red button that is a USB keyboard with a configurable single key. This looks wonderful. I’ll take 26.
RT @codinghorror The Very Serious USB Button https://www.indiegogo.com/projects/very-serious-button/
Eyeo2012 - Robert Hodgin
Robert Hodgin presents various 3D animation projects in a humorous fashion.
MAVIS indexes audio and video so you can do text search over the contents. For example search for ‘metro’ in all of the BUILD conference talks.
I keep seeing crowdsource projects with big names that I actually want to back:
“Two million-dollar projects, a major political speech involving Kickstarter, an amazing band launching a project for a comeback 20 years in the making… the list goes on. Here’s a minute-by-minute breakdown of the day’s events.”
I like the idea of QR codes, encoding URLs and placing them on real world objects, but the QR codes themselves are kind of ugly. To make them less obvious I thought I could spray QR codes on to an object with an infrared reflective paint and shine infrared light on the QR codes, since most cameras, for instance the camera in my G1 phone, pick up infrared that our eyes do not.
In my search for infrared paint I've found a seller of IR ink (via programming forum) and an Infrared Paint Recipe (via IR FAQ).
In looking for this paint I've found that it comes up a lot in relation to the military for things like paint markers that are visible at night with proper equipment, and paint that absorbs IR light to make vehicles less obvious to night vision goggles. Even though the first reflects infrared light and the second absorbs it websites end up refering to both as infrared paint which made it difficult to search.
Additionally I found links to some other geeky infrared projects: