There's no perfect way to change the user agent string for the UWP WebView (x-ms-webview in HTML, Windows.UI.Xaml.Controls.WebView in XAML, and Windows.Web.UI.Interop.WebViewControl in Win32) but there are two imperfect methods folks end up using.
The first is to call UrlMkSetSessionOption. This is an old public API that allows you to configure various arcane options including one that is the default user agent string for requests running through urlmon. This API is allowed by the Microsoft Store for UWP apps. The change it applies is process wide which has two potential drawbacks. If you want to be able to have different UA strings set for different requests from a WebView that's not really possible with this solution. The other drawback is if you're using out of process WebView, you need to ensure you're calling into UrlMkSetSessionOption in the WebView's process. You'll need to write third party WinRT that calls UrlMkSetSessionOption, create the out of proc WebView, navigate it to some trusted local page, use AddWebAllowedObject or provide that URI WinRT access, and call into your third party WinRT. You'll need to do that for any new WebView process you create.
The second less generally applicable solution is to use NavigateWithHttpRequestMessage and set the User-Agent HTTP header. In this case you get to control the scope of the user agent string changes but has the limitations that not all sub resource downloads will use this user agent string and for navigations you don't initiate you have to manually intercept and re-request being careful to transfer over all POST body state and HTTP headers correctly. That last part is not actually possible for iframes.
Folks familiar with JavaScript UWP apps in Win10 have often been confused by what PWAs in Win10 actually are. TLDR: PWAs in Win10 are simply JavaScript UWP apps. The main difference between these JS UWP Apps and our non-PWA JS UWP apps are our target end developer audience, and how we get Win10 PWAs into the Microsoft Store. See this Win10 blog post on PWAs on Win10 for related info.
On the web a subset of web sites are web apps. These are web sites that have app like behavior - that is a user might call it an app like Outlook, Maps or Gmail. And they may also have a W3C app manifest.
A subset of web apps are progressive web apps. Progressive web apps are web apps that have a W3C app manifest and a service worker. Various OSes are beginning to support PWAs as first class apps on their platform. This is true for Win10 as well in which PWAs are run as a WWA.
In Win10 a WWA (Windows Web App) is an unofficial term for a JavaScript UWP app. These are UWP apps so they have an AppxManifest.xml, they are packaged in an Appx package, they run in an App Container, they use WinRT APIs, and are installed via the Microsoft Store. Specific to WWAs though, is that the AppxManifest.xml specifies a StartPage attribute identifying some HTML content to be used as the app. When the app is activated the OS will create a WWAHost.exe process that hosts the HTML content using the EdgeHtml rendering engine.
Within that we have a notion of a packaged web app and an HWA (hosted web app). There's no real technical distinction for the end developer between these two. The only real difference is whether the StartPage identifies remote HTML content on the web (HWA), or packaged HTML content from the app's appx package (packaged web app). An end developer may create an app that is a mix of these as well, with HTML content in the package and HTML content from the web. These terms are more like ends on a continuum and identifying two different developer scenarios since the underlying technical aspect is pretty much identical.
Win10 PWAs are simply HWAs that specify a StartPage of a URI for a PWA on the web. These are still JavaScript UWP apps with all the same behavior and abilities as other UWP apps. We have two ways of getting PWAs into the Microsoft Store as Win10 PWAs. The first is PWA Builder which is a tool that helps PWA end developers create and submit to the Microsoft Store a Win10 PWA appx package. The second is a crawler that runs over the web looking for PWAs which we convert and submit to the Store using an automated PWA Builder-like tool to create a Win10 PWA from PWAs on the web (see Welcoming PWAs to Win10 for more info). In both cases the conversion involves examining the PWAs W3C app manifest and producing a corresponding AppxManifest.xml. Not all features supported by AppxManifest.xml are also available in the W3c app manifest. But the result of PWA Builder can be a working starting point for end developers who can then update the AppxManifest.xml as they like to support features like share targets or others not available in W3C app manifests.
In Win8.1 JavaScript UWP apps we supported multiple windows using MSApp DOM APIs. In Win10 we use window.open and window and a new MSApp API getViewId and the previous MSApp APIs are gone:
Win10 | Win8.1 | |
---|---|---|
Create new window | window.open | MSApp.createNewView |
New window object | window | MSAppView |
viewId | MSApp.getViewId(window) | MSAppView.viewId |
We use window.open and window for creating new windows, but then to interact with WinRT APIs we add the MSApp.getViewId API. It takes a window object as a parameter and returns a viewId number that can be used with the various Windows.UI.ViewManagement.ApplicationViewSwitcher APIs.
Views in WinRT normally start hidden and the end developer uses something like TryShowAsStandaloneAsync
to display the view once it is fully prepared. In the web world, window.open shows a window immediately and the end user can watch as content is loaded and rendered. To have your new windows act
like views in WinRT and not display immediately we have added a window.open option. For example
let newWindow = window.open("https://example.com", null, "msHideView=yes");
The primary window that is initially opened by the OS acts differently than the secondary windows that it opens:
Primary | Secondary | |
---|---|---|
window.open | Allowed | Disallowed |
window.close | Close app | Close window |
Navigation restrictions | ACUR only | No restrictions |
The restriction on secondary windows such that they cannot open secondary windows could change in the future depending on feedback.
Lastly, there is a very difficult technical issue preventing us from properly supporting synchronous, same-origin, cross-window, script calls. That is, when you open a window that's same origin, script in one window is allowed to directly call functions in the other window and some of these calls will fail. postMessage calls work just fine and is the recommended way to do things if that's possible for you. Otherwise we continue to work on improving this.
JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.
The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.
This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.
If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.
The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.
When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target.
If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated
event is fired (more details on
the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current
page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing
the WebUIApplication activated event.
Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
MSApp.pageHandlesAllApplicationActivations(true)
API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
does require of course that all of your pages all handle all activation kinds about which any part of your app cares.
Since I had last posted about using Let's Encrypt with NearlyFreeSpeech, NFS has changed their process for setting TLS info. Instead of putting the various files in /home/protected/ssl and submitting an assistance request, now there is a command to submit the certificate info and a webpage for submitting the certificate info.
The webpage is https://members.nearlyfreespeech.net/{username}/sites/{sitename}/add_tls
and has a textbox for you to paste in all the cert info in PEM form into the textbox. The
domain key, the domain certificate, and the Let's Encrypt intermediate cert must be pasted into the textbox and submitted.
Alternatively, that same info may be provided as standard input to nfsn -i set-tls
To renew my certificate with the updated NFS process I followed the commands from Andrei Damian-Fekete's script which depends on acme_tiny.py:
python acme_tiny.py --account-key account.key --csr domain.csr --acme-dir /home/public/.well-known/acme-challenge/ > signed.crt
wget -O - https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem > intermediate.pem
cat domain.key signed.crt intermediate.pem > chained.pem
nfsn -i set-tls < chained.pem
Because
my certificate had already expired I needed to comment out the section in acme_tiny.py that validates the challenge file. The filenames in the above map to the following:
nasa:
This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!
The only people they will talk with regularly are mission control and each other.
The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.
What will they be doing?
Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it.
A few other details:
- The crew follows a timeline that is similar to one used for the ISS crew.
- They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
- They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission.
Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
nasa:
This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!
The only people they will talk with regularly are mission control and each other.
The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.
What will they be doing?
Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it.
A few other details:
- The crew follows a timeline that is similar to one used for the ISS crew.
- They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
- They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission.
Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com