Its rare to find devs anticipating Unicode control characters showing up in user input. And the most fun when unanticipated is the Right-To-Left Override character U+202E. Unicode characters have an implicit direction so that for example by default Hebrew characters are rendered from right to left, and English characters are rendered left to right. The override characters force an explicit direction for all the text that follows.
I chose my Twitter display name to include the HTML encoding of the Right-To-Left Override character #x202E;
as a sort of joke or shout out to my favorite Unicode control character.
I did not anticipate that some Twitter clients in some of their UI would fail to encode it correctly. There's no way I can remove that from my display name now.
Try it on Amazon.
The scrollbars in UWP WebView and in Edge have different default behavior leading to many emails to my team. (Everything I talk about here is for the EdgeHtml based WebView and Edge browser and does not apply to the Chromium based Edge browser and WebView2).
There is a Edge only -ms-overflow-style
CSS property that controls scroll behavior. We have a
different default for this in the WebView as compared to the Edge browser. If you want the appearance of the scrollbar in the WebView to match the browser then you must explicitly set that CSS
property. The Edge browser default is scrollbar
which gives us a Windows desktop styled non-auto-hiding scrollbar. The WebView default is -ms-autohiding-scrollbar
which
gives a sort of compromise between desktop and UWP app scrollbar behavior. In this configuration it is auto-hiding. When used with the mouse you'll get Windows desktop styled scrollbars and when
used with touch you'll get the UWP styled scrollbars.
Since WebViews are intended to be used in apps this style is the default in order to better match the app's scrollbars. However this difference between the browser and WebView has led to confusion.
Here’s an -ms-overflow-style JSFiddle showing the difference between the two styles. Try it in the Edge browser and in WebView. An easy way to try it in the Edge WebView is using the JavaScript Browser.
The GoBack and GoForward methods on the UWP WebView (x-ms-webview in HTML, Windows.UI.Xaml.Controls.WebView in XAML, and Windows.Web.UI.Interop.WebViewControl in Win32) act the same as the Back and Forward buttons in the Edge browser. They don't necessarily change the top level document of the WebView. If inside the webview an iframe navigates then that navigation will be recorded in the forward/back history and the GoBack / GoForward call may result in navigating that iframe. This makes sense as an end user using the Edge browser since if I click a link to navigate one place and then hit Back I expect to sort of undo that most recent navigation regardless of if that navigation happened in an iframe or the top level document.
If that doesn't make sense for your application and you want to navigate forward or back ignoring iframe navigates, unfortunately there's no perfect workaround.
One workaround could be to try calling GoBack and then checking if a FrameNavigationStarting event fires or a NavigationStarting event fires. If a frame navigates then try calling GoBack again. There could be async races in this case since other navigates could come in and send you the wrong signal and interrupt your multi step GoBack operation.
You could also try keeping track of all top level document navigations and manually navigate back to the URIs you care about. However, GoBack and GoForward also restore some amount of user state (form fills etc) in addition to navigating. Manually calling navigate will not give this same behavior.
TL;DR: Web content in a JavaScript Windows Store app or WebView in a Windows Store app that has full access to WinRT also gets to use XHR unrestricted by cross origin checks.
By default web content in a WebView control in a Windows Store App has the same sort of limitations as that web content in a web browser. However, if you give the URI of that web content full access to WinRT, then the web content also gains the ability to use XMLHttpRequest unrestricted by cross origin checks. This means no CORS checks and no OPTIONS requests. This only works if the web content's URI matches a Rule in the ApplicationContentUriRules of your app's manifest and that Rule declares WindowsRuntimeAccess="all". If it declares WinRT access as 'None' or 'AllowForWebOnly' then XHR acts as it normally does.
In terms of security, if you've already given a page access to all of WinRT which includes the HttpRequest class and other networking classes that don't perform cross origin checks, then allowing XHR to skip CORS doesn't make things worse.
Adds the yield keyword enabling you to write JS code that sort of looks like C# await.
Overview
First-class coroutines, represented as objects encapsulating suspended execution contexts (i.e., function activations). Prior art: Python, Icon, Lua, Scheme, Smalltalk.
To decide what Gob’s bad impression of a chicken might be, Arnett consulted on set in 2003 with series executive producers Mitch Hurwitz and James Vallely. They all tried out different versions for each other. “Jimmy started doing a little bit, then Mitch got up and did some, and then I began trying things,” remembers Arnett. “Picture three grown men hopping around, working out what it would be … They were pitching this really taunting dance, but I wanted to give it this very sharp, almost roosterlike, chest-sticking-out mannerism, like a real macho bravado dance.” And how did clapping get introduced to the move? “Because I wanted it to be only sort of threatening.”
#!/bin/bash
function f() {
sleep "$1"
echo "$1"
}
while [ -n "$1" ]
do
f "$1" &
shift
done
wait
example usage:
./sleepsort.bash 5 3 6 3 6 3 1 4 7
"I wanted to ensure that my switch statement in my implementation of IInternetSecurityManager::ProcessURLAction had a case for every possible documented URLACTION. I wrote the following short command line sequence to see the list of all URLACTIONs in the SDK header file not found in my source file:
grep URLACTION urlmon.idl | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > allURLACTIONs.txt
grep URLACTION MySecurityManager.cpp | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > myURLACTIONs.txt
comm -23 allURLACTIONs.txt myURLACTIONs.txt
I'm
not a sed expert so I had to read the sed documentation, and I heard about comm from Kris Kowal's blog which happilly was in the Win32 GNU tools pack I
already run.
But in my effort to learn and use PowerShell I found the following similar command line:
diff
(more urlmon.idl | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
(more MySecurityManager.cpp | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
In
the PowerShell version I can skip the temporary files which is nice. 'diff' is mapped to 'compare-object' which seems similar to comm but with no parameters to filter out the different streams
(although this could be done more verbosely with the ?{ } filter syntax). In PowerShell uniq functionality is built into sort. The builtin -cmatch operator (c is for case sensitive) to do regexp is
nice plus the side effect of generating the $matches variable with the regexp results.
When you run clip.exe, whatever comes into its standard input is put onto the clipboard. So when you need to move the result of something in your command window somewhere else you can pipe the result into clip.exe. Then you won't have to worry about the irritating way cmd.exe does block copy/pasting and you avoid having to manually fixup line breaks in wrapped lines. For instance, you can put the contents of a script into the clipboard with:
more cdo.cmd | clip
I've got a lot of stuff dumped in my bin folder that I sync across all my PCs so I didn't realize that clip.exe is a part of standard Windows installs.
Nice for avoiding the block copy in cmd.exe but I'd prefer to have the contents sort of tee'd into the clipboard and standard output. So TeeClip.ps1:
$input | tee -var teeclipout | clip;
$teeclipout;
I've made two simple command line tools related to the console window and Win7 jump lists. The source is available for both but neither is much more than the sort of samples you'd find on MSDN =).
SetAppUserModelId lets you change the Application User Model ID for the current console window. The AppUserModelId is the value Win7 uses to group together icons on the task bar and is what the task bar's jump lists are associated with. The tool lets you change that as well as the icon and name that appear in the task bar for the window, and the command to launch if the user attempts to re-launch the application from its task bar icon.
SetJumpList lets you set the jump list associated with a particular AppUserModelId. You pass the AppUserModelId as the only parameter and then in its standard input you give it lines specifying items that should appear in the jump list and what to execute when those items are picked.
I put these together to make my build environment easier to deal with at work. I have to deal with multiple enlistments in many different branches and so I wrote a simple script around these two tools to group my build windows by branch name in the task bar, and to add the history of commands I've used to launch the build environment console windows to the jump list of each.