subst - Dave's Blog

Search
My timeline on Mastodon

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

Stripe CTF - XSS, CSRF (Levels 4 & 6)

2012 Sep 10, 4:43

Level 4 and level 6 of the Stripe CTF had solutions around XSS.

Level 4

Code

> Registered Users 

    <%@registered_users.each do |user| %>
    <%last_active = user[:last_active].strftime('%H:%M:%S UTC') %>
    <%if @trusts_me.include?(user[:username]) %>

  • <%= user[:username] %>
    (password: <%= user[:password] %>, last active <%= last_active %>)
  • Issue

    The level 4 web application lets you transfer karma to another user and in doing so you are also forced to expose your password to that user. The main user page displays a list of users who have transfered karma to you along with their password. The password is not HTML encoded so we can inject HTML into that user's browser. For instance, we could create an account with the following HTML as the password which will result in XSS with that HTML:

    
    
    This HTML runs script that uses jQuery to post to the transfer URI resulting in a transfer of karma from the attacked user to the attacker user, and also the attacked user's password.

    Notes

    Code review red flags in this case included lack of encoding when using user controlled content to create HTML content, storing passwords in plain text in the database, and displaying passwords generally. By design the web app shows users passwords which is a very bad idea.

    Level 6

    Code

    
    

    ...

    def self.safe_insert(table, key_values)
    key_values.each do |key, value|
    # Just in case people try to exfiltrate
    # level07-password-holder's password
    if value.kind_of?(String) &&
    (value.include?('"') || value.include?("'"))
    raise "Value has unsafe characters"
    end
    end

    conn[table].insert(key_values)
    end

    Issue

    This web app does a much better job than the level 4 app with HTML injection. They use encoding whenever creating HTML using user controlled data, however they don't use encoding when injecting JSON data into script (see post_data initialization above). This JSON data is the last five most recent messages sent on the app so we get to inject script directly. However, the system also ensures that no strings we write contains single or double quotes so we can't get out of the string in the JSON data directly. As it turns out, HTML lets you jump out of a script block using no matter where you are in script. For instance, in the middle of a value in some JSON data we can jump out of script. But we still want to run script, so we can jump right back in. So the frame so far for the message we're going to post is the following:

    
    
    
    
PermalinkCommentscsrf encoding html internet javascript percent-encoding script security stripe-ctf technical web xss

CAN PEOPLE DISTINGUISH PATE FROM DOG FOOD? - AMERICAN ASSOCIATION OF WINE ECONOMISTS

2009 Jul 6, 2:06"Considering the similarity of its ingredients, canned dog food could be a suitable and inexpensive substitute for pate or processed blended meat products such as Spam or liverwurst... Although 72% of subjects ranked the dog food as the worst of the five samples in terms of taste... subjects were not better than random at correctly identifying the dog food."PermalinkCommentshumor science statistics food culture research study paper

The Artvertiser

2009 Jun 2, 12:51"The Artvertiser is an urban, hand-held, augmented-reality project exploring on-site substitution of advertising content for the purposes of exhibiting art." There's some videos on the site of their prototype software. I've got a similar idea I want to try with my G1.PermalinkCommentsvideo art design advertising aug augmented-reality

Subst Allows Non-Letter Drive Letters

2009 Mar 4, 2:39

I knew that the command line tool subst would create virtual drives that map to existing directories but I didn't know that subst lets you name the virtual drives with characters that aren't US-ASCII letters. For instance you can run 'subst 4: C:\windows' and then 'more 4:\win.ini' to dump C:\windows\win.ini. This also works for non-US-ASCII characters like, "C" (aka U+FF23, Fullwidth Latin Capital Letter C), which when displayed by cmd.exe via some best fit style character conversions looks just like the regular US-ASCII 'C'. None of Explorer, IE, or the common file dialogs allow the use of these odd virtual drives -- just cmd.exe, so I'm not sure how this would ever be useful but I thought it was odd and I wanted to share.

PermalinkCommentscli technical boring subst windows

Tab Expansion in PowerShell

2008 Nov 18, 6:38

PowerShell gives us a real CLI for Windows based around .Net stuff. I don't like the creation of a new shell language but I suppose it makes sense given that they want something C# like but not C# exactly since that's much to verbose and strict for a CLI. One of the functions you can override is the TabExpansion function which is used when you tab complete commands. I really like this and so I've added on to the standard implementation to support replacing a variable name with its value, tab completion of available commands, previous command history, and drive names (there not restricted to just one letter in PS).

Learning the new language was a bit of a chore but MSDN helped. A couple of things to note, a statement that has a return value that you don't do anything with is implicitly the return value for the current function. That's why there's no explicit return's in my TabExpansion function. Also, if you're TabExpansion function fails or returns nothing then the builtin TabExpansion function runs which does just filenames. This is why you can see that the standard TabExpansion function doesn't handle normal filenames: it does extra stuff (like method and property completion on variables that represent .Net objects) but if there's no fancy extra stuff to be done it lets the builtin one take a crack.

Here's my TabExpansion function. Probably has bugs, so watch out!


function EscapePath([string] $path, [string] $original)
{
    if ($path.Contains(' ') -and !$original.Contains(' '))
    {
        '"'   $path   '"';
    }
    else
    {
        $path;
    }
}

function PathRelativeTo($pathDest, $pathCurrent)
{
    if ($pathDest.PSParentPath.ToString().EndsWith($pathCurrent.Path))
    {
        '.\'   $pathDest.name;
    }
    else
    {
        $pathDest.FullName;
    }
}

#  This is the default function to use for tab expansion. It handles simple
# member expansion on variables, variable name expansion and parameter completion
# on commands. It doesn't understand strings so strings containing ; | ( or { may
# cause expansion to fail.

function TabExpansion($line, $lastWord)
{
    switch -regex ($lastWord)
    {
         # Handle property and method expansion...
         '(^.*)(\$(\w|\.) )\.(\w*)$' {
             $method = [Management.Automation.PSMemberTypes] `
                 'Method,CodeMethod,ScriptMethod,ParameterizedProperty'
             $base = $matches[1]
             $expression = $matches[2]
             Invoke-Expression ('$val='   $expression)
             $pat = $matches[4]   '*'
             Get-Member -inputobject $val $pat | sort membertype,name |
                 where { $_.name -notmatch '^[gs]et_'} |
                 foreach {
                     if ($_.MemberType -band $method)
                     {
                         # Return a method...
                         $base   $expression   '.'   $_.name   '('
                     }
                     else {
                         # Return a property...
                         $base   $expression   '.'   $_.name
                     }
                 }
             break;
          }

         # Handle variable name expansion...
         '(^.*\$)([\w\:]*)$' {
             $prefix = $matches[1]
             $varName = $matches[2]
             foreach ($v in Get-Childitem ('variable:'   $varName   '*'))
             {
                 if ($v.name -eq $varName)
                 {
                     $v.value
                 }
                 else
                 {
                    $prefix   $v.name
                 }
             }
             break;
         }

         # Do completion on parameters...
         '^-([\w0-9]*)' {
             $pat = $matches[1]   '*'

             # extract the command name from the string
             # first split the string into statements and pipeline elements
             # This doesn't handle strings however.
             $cmdlet = [regex]::Split($line, '[|;]')[-1]

             #  Extract the trailing unclosed block e.g. ls | foreach { cp
             if ($cmdlet -match '\{([^\{\}]*)$')
             {
                 $cmdlet = $matches[1]
             }

             # Extract the longest unclosed parenthetical expression...
             if ($cmdlet -match '\(([^()]*)$')
             {
                 $cmdlet = $matches[1]
             }

             # take the first space separated token of the remaining string
             # as the command to look up. Trim any leading or trailing spaces
             # so you don't get leading empty elements.
             $cmdlet = $cmdlet.Trim().Split()[0]

             # now get the info object for it...
             $cmdlet = @(Get-Command -type 'cmdlet,alias' $cmdlet)[0]

             # loop resolving aliases...
             while ($cmdlet.CommandType -eq 'alias') {
                 $cmdlet = @(Get-Command -type 'cmdlet,alias' $cmdlet.Definition)[0]
             }

             # expand the parameter sets and emit the matching elements
             foreach ($n in $cmdlet.ParameterSets | Select-Object -expand parameters)
             {
                 $n = $n.name
                 if ($n -like $pat) { '-'   $n }
             }
             break;
         }

         default {
             $varNameStar = $lastWord   '*';

             foreach ($n in @(Get-Childitem $varNameStar))
             {
                 $name = PathRelativeTo ($n) ($PWD);

                 if ($n.PSIsContainer)
                 {
                     EscapePath ($name   '\') ($lastWord);
                 }
                 else
                 {
                     EscapePath ($name) ($lastWord);
                 }
             }

             if (!$varNameStar.Contains('\'))
             {
                foreach ($n in @(Get-Command $varNameStar))
                {
                    if ($n.CommandType.ToString().Equals('Application'))
                    {
                       foreach ($ext in @((cat Env:PathExt).Split(';')))
                       {
                          if ($n.Path.ToString().ToLower().EndsWith(($ext).ToString().ToLower()))
                          {
                              EscapePath($n.Path) ($lastWord);
                          }
                       }
                    }
                    else
                    {
                        EscapePath($n.Name) ($lastWord);
                    }
                }

                foreach ($n in @(Get-psdrive $varNameStar))
                {
                    EscapePath($n.name   ":") ($lastWord);
                }
             }

             foreach ($n in @(Get-History))
             {
                 if ($n.CommandLine.StartsWith($line) -and $n.CommandLine -ne $line)
                 {
                     $lastWord   $n.CommandLine.Substring($line.Length);
                 }
             }

             # Add the original string to the end of the expansion list.
             $lastWord;

             break;
         }
    }
}

PermalinkCommentscli technical tabexpansion powershell

Worse Than Failure - Character encoding WTF

2007 Oct 19, 4:10FTA: 'This letter was sent to a Russian student by her French friend, who manually wrote the address that he received by e-mail. His e-mail client, unfortunately, was not set up correctly to display Cyrillic characters, so they were substituted with diacrPermalinkCommentsencoding charset unicode language humor article
Older Entries Creative Commons License Some rights reserved.