Previously I described Application Content URI Rules (ACUR) parsing and ACUR ordering. This post describes what you get from putting a URI in ACUR.
URIs in the ACUR gain the following which is otherwise unavailable:
URIs in the ACUR that also have full WinRT access additionally gain the following:
JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.
The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.
This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.
If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.
The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.
When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target.
If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated
event is fired (more details on
the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current
page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing
the WebUIApplication activated event.
Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the
MSApp.pageHandlesAllApplicationActivations(true)
API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This
does require of course that all of your pages all handle all activation kinds about which any part of your app cares.
Application Content URI Rules (ACUR from now on) defines the bounds on the web that make up a Microsoft Store application. The previous blog post discussed the syntax of the Rule's Match attribute and this time I'll write about the interactions between the Rules elements.
A single ApplicationContentUriRules element may have up to 100 Rule child elements. When determining if a navigation URI matches any of the ACUR the last Rule in the list with a matching match wildcard URI is used. If that Rule is an include rule then the navigation URI is determined to be an application content URI and if that Rule is an exclude rule then the navigation rule is not an application content URI. For example:
Rule Type='include' Match='https://example.com/'/
Rule Type='exclude' Match='https://example.com/'/
Given the above two rules in that order, the navigation URI https://example.com/ is not an application content URI because the last matching rule is the exclude rule. Reverse the order of the rules and get the opposite result.
In addition to determining if a navigation URI is application content or not, a Rule may also confer varying levels of WinRT access via the optional WindowsRuntimeAccess attribute which may be set to 'none', 'allowForWeb', or 'all'. If a navigation URI matches multiple different include rules only the last rule is applied even as it applies to the WindowsRuntimeAccess attribute. For example:
Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='none'/
Rule Type='include' Match='https://example.com/' WindowsRuntimeAccess='all'/
Given the above two rules in that order, the navigation URI https://example.com/ will have access to all WinRT APIs because the last matching rule wins. Reverse the rule order and the navigation URI https://example.com/ will have no access to WinRT. There is no summation or combining of multiple matching rules - only the last matching rule wins.
Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.
You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.
The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.
Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.
For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.
For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c
Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.
If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.
As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.
I've made a PowerShell script to show system toast notifications with WinRT and PowerShell. Along the way I learned several interesting things.
First off calling WinRT from PowerShell involves a strange syntax. If you want to use a class you write [-Class-,-Namespace-,ContentType=WindowsRuntime] first to tell PowerShell about the type. For example here I create a ToastNotification object:
[void][Windows.UI.Notifications.ToastNotification,Windows.UI.Notifications,ContentType=WindowsRuntime];
$toast = New-Object Windows.UI.Notifications.ToastNotification -ArgumentList $xml;
And
here I call the static method CreateToastNotifier on the ToastNotificationManager class:
[void][Windows.UI.Notifications.ToastNotificationManager,Windows.UI.Notifications,ContentType=WindowsRuntime];
$notifier = [Windows.UI.Notifications.ToastNotificationManager]::CreateToastNotifier($AppUserModelId);
With
this I can call WinRT methods and this is enough to show a toast but to handle the click requires a little more work.
To handle the user clicking on the toast I need to listen to the Activated event on the Toast object. However Register-ObjectEvent doesn't handle WinRT events. To work around this I created a .NET event wrapper class to turn the WinRT event into a .NET event that Register-ObjectEvent can handle. This is based on Keith Hill's blog post on calling WinRT async methods in PowerShell. With the event wrapper class I can run the following to subscribe to the event:
function WrapToastEvent {
param($target, $eventName);
Add-Type -Path (Join-Path $myPath "PoshWinRT.dll")
$wrapper = new-object "PoshWinRT.EventWrapper[Windows.UI.Notifications.ToastNotification,System.Object]";
$wrapper.Register($target, $eventName);
}
[void](Register-ObjectEvent -InputObject (WrapToastEvent $toast "Activated") -EventName FireEvent -Action {
...
});
To handle the Activated event I want to put focus back on the PowerShell window that created the toast. To do this I need to call the Win32 function SetForegroundWindow. Doing so from PowerShell is surprisingly easy. First you must tell PowerShell about the function:
Add-Type @"
using System;
using System.Runtime.InteropServices;
public class PInvoke {
[DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)]
public static extern bool SetForegroundWindow(IntPtr hwnd);
}
"@
Then
to call:
[PInvoke]::SetForegroundWindow((Get-Process -id $myWindowPid).MainWindowHandle);
But figuring out the HWND to give to SetForegroundWindow isn't totally straight forward. Get-Process exposes a MainWindowHandle property but if you start a cmd.exe prompt and then run PowerShell inside of that, the PowerShell process has 0 for its MainWindowHandle property. We must follow up process parents until we find one with a MainWindowHandle:
$myWindowPid = $pid;
while ($myWindowPid -gt 0 -and (Get-Process -id $myWindowPid).MainWindowHandle -eq 0) {
$myWindowPid = (gwmi Win32_Process -filter "processid = $($myWindowPid)" | select ParentProcessId).ParentProcessId;
}
If you want to represent a value larger than 32bits in an enum in MSVC++ you can use C++0x style syntax to tell the compiler exactly what kind of integral type to store the enum values. Unfortunately by default an enum is always 32bits, and additionally while you can specify constants larger than 32bits for the enum values, they are silently truncated to 32bits.
For instance the following doesn't compile because Lorem::a and Lorem::b have the same value of '1':
enum Lorem {
a = 0x1,
b = 0x100000001
} val;
switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}
Unfortunately it is not an error to have b's constant truncated, and the previous without the switch statement does compile just fine:
enum Lorem {
a = 0x1,
b = 0x100000001
} val;
But you can explicitly specify that the enum should be represented by a 64bit value and get expected compiling behavior with the following:
enum Lorem : UINT64 {
a = 0x1,
b = 0x100000001
} val;
switch (val) {
case Lorem::a:
break;
case Lorem::b:
break;
}
Stripe's web security CTF's level 0 and level 3 had SQL injection solutions described below.
app.get('/*', function(req, res) {
var namespace = req.param('namespace');
if (namespace) {
var query = 'SELECT * FROM secrets WHERE key LIKE ? || ".%"';
db.all(query, namespace, function(err, secrets) {
There's no input validation on the namespace parameter and it is injected into the SQL query with no encoding applied. This means you can use the '%' character as the namespace which is the wildcard character matching all secrets.
Code review red flag was using strings to query the database. Additional levels made this harder to exploit by using an API with objects to construct a query rather than strings and by running a query that only returned a single row, only ran a single command, and didn't just dump out the results of the query to the caller.
@app.route('/login', methods=['POST'])
def login():
username = flask.request.form.get('username')
password = flask.request.form.get('password')
if not username:
return "Must provide username\n"
if not password:
return "Must provide password\n"
conn = sqlite3.connect(os.path.join(data_dir, 'users.db'))
cursor = conn.cursor()
query = """SELECT id, password_hash, salt FROM users
WHERE username = '{0}' LIMIT 1""".format(username)
cursor.execute(query)
res = cursor.fetchone()
if not res:
return "There's no such user {0}!\n".format(username)
user_id, password_hash, salt = res
calculated_hash = hashlib.sha256(password + salt)
if calculated_hash.hexdigest() != password_hash:
return "That's not the password for {0}!\n".format(username)
There's little input validation on username before it is used to constrcut a SQL query. There's no encoding applied when constructing the SQL query string which is used to, given a username, produce the hashed password and the associated salt. Accordingly one can make username a part of a SQL query command which ensures the original select returns nothing and provide a new SELECT via a UNION that returns some literal values for the hash and salt. For instance the following in blue is the query template and the red is the username injected SQL code:
SELECT id, password_hash, salt FROM users WHERE username = 'doesntexist' UNION SELECT id, ('5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8') AS password_hash, ('word') AS salt FROM users WHERE username = 'bob' LIMIT 1
In the above I've supplied my own salt and hash such that my salt (word) plus my password (pass) hashed produce the hash I provided above. Accordingly, by
providing the above long and interesting looking username and password as 'pass' I can login as any user.
Code review red flag is again using strings to query the database. Although this level was made more difficult by using an API that returns only a single row and by using the execute method which only runs one command. I was forced to (as a SQL noob) learn the syntax of SELECT in order to figure out UNION and how to return my own literal values.
This document defines several Structured Syntax Suffixes for use with media type registrations. In particular, it defines and registers the “+json”, “+ber”, “+der”, “+fastinfoset”, “+wbxml” and “+zip” Structured Syntax Suffixes, and updates the “+xml” Structured Syntax Suffix registration.
By the URI RFC there is only one way to represent a particular IPv4 address in the host of a URI. This is the standard dotted decimal notation of four bytes in decimal with no leading zeroes delimited by periods. And no leading zeros are allowed which means there's only one textual representation of a particular IPv4 address.
However as discussed in the URI RFC, there are other forms of IPv4 addresses that although not officially allowed are generally accepted. Many implementations used inet_aton to parse the address from the URI which accepts more than just dotted decimal. Instead of dotted decimal, each dot delimited part can be in decimal, octal (if preceded by a '0') or hex (if preceded by '0x' or '0X'). And that's each section individually - they don't have to match. And there need not be 4 parts: there can be between 1 and 4 (inclusive). In case of less than 4, the last part in the string represents all of the left over bytes, not just one.
For example the following are all equivalent:
The bread and butter of URI related security issues is when one part of the system disagrees with another about the interpretation of the URI. So this non-standard, non-normal form syntax has been been a great source of security issues in the past. Its mostly well known now (CreateUri normalizes these non-normal forms to dotted decimal), but occasionally a good tool for bypassing naive URI blocking systems.
As a professional URI aficionado I deal with various levels of ignorance on URI percent-encoding (aka URI encoding, or URL escaping). The basest ignorance is with respect to the mere existence of percent-encoding. Percents in URIs are special: they always represent the start of a percent-encoded octet. That is to say, a percent is always followed by two hex digits that represents a value between 0 and 255 and doesn't show up in a URI otherwise.
The IPv6 textual syntax for scoped addresses uses the '%' to delimit the zone ID from the rest of the address. When it came time to define how to represent scoped IPv6 addresses in URIs there were two camps: Folks who wanted to use the IPv6 format as is in the URI, and those who wanted to encode or replace the '%' with a different character. The resulting thread was more lively than what shows up on the IETF URI discussion mailing list. Ultimately we went with a percent-encoded '%' which means the percent maintains its special status and singular purpose.
“The syntax for allowed Top-Level Domain (TLD) labels in the Domain Name System (DNS) is not clearly applicable to the encoding of Internationalised Domain Names (IDNs) as TLDs. This document provides a concise specification of TLD label syntax based on existing syntax documentation, extended minimally to accommodate IDNs.” Still irritated about arbitrary TLDs.
I wanted to ensure that my switch statement in my implementation of IInternetSecurityManager::ProcessURLAction had a case for every possible documented URLACTION. I wrote the following short command line sequence to see the list of all URLACTIONs in the SDK header file not found in my source file:
grep URLACTION urlmon.idl | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > allURLACTIONs.txt
grep URLACTION MySecurityManager.cpp | sed 's/.*\(URLACTION[a-zA-Z0-9_]*\).*/\1/g;' | sort | uniq > myURLACTIONs.txt
comm -23 allURLACTIONs.txt myURLACTIONs.txt
I'm
not a sed expert so I had to read the sed documentation, and I heard about comm from Kris Kowal's blog which happilly was in the Win32 GNU tools pack I
already run.
But in my effort to learn and use PowerShell I found the following similar command line:
diff
(more urlmon.idl | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
(more MySecurityManager.cpp | %{ if ($_ -cmatch "URLACTION[a-zA-Z0-9_]*") { $matches[0] } } | sort -uniq)
In
the PowerShell version I can skip the temporary files which is nice. 'diff' is mapped to 'compare-object' which seems similar to comm but with no parameters to filter out the different streams
(although this could be done more verbosely with the ?{ } filter syntax). In PowerShell uniq functionality is built into sort. The builtin -cmatch operator (c is for case sensitive) to do regexp is
nice plus the side effect of generating the $matches variable with the regexp results.
I'm excited by HTML5's video tag as are plenty of other people. Once that comes about and once media fragments are adopted, linking to or embedding a portion of a video will be as easy as using the correct fragment on your URL thanks to the Media Fragments WG who has been hard at work since the last time I looked at fragments.
However, until that work is embraced by browsers, embedding portions of videos will continue to require work specific to the site from which you are embedding the video. On the YouTube blog they wrote about how to "link to the best parts in your videos", using a fragment syntax like '#t=1m15s' to start playback of the associated video at 1 minute and 15 seconds. Of course if you want to embed part of a Hulu video it will be different. Although I haven't found an authoritative source describing the URL syntax to use, you can follow Hulu's video guide on linking to part of a video and note how the URL changes as you adjust the slider on the time-line. It looks like their syntax for linking to a Hulu page is to add '?c=[start time in seconds](:[end time in seconds])' with the colon and end time optional in order to link to a portion of a video. And the syntax for embedding appears to be "http://www.hulu.com/embed/.../[start time in seconds](/[end time in seconds])" again with the end time optional.
For more sites, check out the Media Fragments WG's list of existing applications' proprietary fragmenting schemes.
I'm a big fan of the concept of registerProtocolHandler in HTML 5 and in FireFox 3, but not quite the implementation. From a high level, it allows web apps to register themselves as handlers of an URL scheme so for (the canonical) example, GMail can register for the mailto URL scheme. I like the concept:
registerProtocolHandler("info:lccn/{lccnID}", "htttp://www.librarything.com/search_works.php?q={lccnID}", "LibraryThing LCCN")
Windows allows for application protocols in which, through the registry, you specify a URL scheme and a command line to have that URL passed to your application. Its an easy way to hook a webbrowser up to your application. Anyone can read the doc above and then walk through the registry and pick out the application protocols but just from that info you can't tell what the application expects these URLs to look like. I did a bit of research on some of the application protocols I've seen which is listed below. Good places to look for information on URI schemes: Wikipedia URI scheme, and ESW Wiki UriSchemes.
Scheme | Name | Notes |
---|---|---|
search-ms | Windows Search Protocol |
The search-ms application protocol is a convention for querying the Windows Search index. The protocol enables applications, like Microsoft Windows Explorer, to query the index with
parameter-value arguments, including property arguments, previously saved searches, Advanced Query Syntax, Natural Query Syntax, and language code identifiers (LCIDs) for both the Indexer and
the query itself. See the MSDN docs for search-ms for more info. Example: search-ms:query=food |
Explorer.AssocProtocol.search-ms | ||
OneNote | OneNote Protocol |
From the OneNote help: /hyperlink "pagetarget" - Starts OneNote and opens the page specified by the pagetarget parameter. To obtain the hyperlink for any page in a OneNote
notebook, right-click its page tab and then click Copy Hyperlink to this Page.Example: onenote:///\\GUMMO\Users\davris\Documents\OneNote%20Notebooks\OneNote%202007%20Guide\Getting%20Started%20with%20OneNote.one#section-id={692F45F5-A42A-415B-8C0D-39A10E88A30F}&end |
callto | Callto Protocol |
ESW Wiki Info on callto Skype callto info NetMeeting callto info Example: callto://+12125551234 |
itpc | iTunes Podcast |
Tells iTunes to subscribe to an indicated podcast. iTunes documentation. C:\Program Files\iTunes\iTunes.exe /url "%1" Example: itpc:http://www.npr.org/rss/podcast.php?id=35 |
iTunes.AssocProtocol.itpc | ||
pcast | ||
iTunes.AssocProtocol.pcast | ||
Magnet | Magnet URI | Magnet URL scheme described by Wikipedia. Magnet URLs identify a resource by a hash of that resource so that when used in P2P scenarios no central authority is necessary to create URIs for a resource. |
mailto | Mail Protocol |
RFC 2368 - Mailto URL Scheme. Mailto Syntax Opens mail programs with new message with some parameters filled in, such as the to, from, subject, and body. Example: mailto:?to=david.risney@gmail.com&subject=test&body=Test of mailto syntax |
WindowsMail.Url.Mailto | ||
MMS | mms Protocol |
MSDN describes associated protocols. Wikipedia describes MMS. "C:\Program Files\Windows Media Player\wmplayer.exe" "%L" Also appears to be related to MMS cellphone messages: MMS IETF Draft. |
WMP11.AssocProtocol.MMS | ||
secondlife | [SecondLife] |
Opens SecondLife to the specified location, user, etc. SecondLife Wiki description of the URL scheme. "C:\Program Files\SecondLife\SecondLife.exe" -set SystemLanguage en-us -url "%1" Example: secondlife://ahern/128/128/128 |
skype | Skype Protocol |
Open Skype to call a user or phone number. Skype's documentation Wikipedia summary of skype URL scheme "C:\Program Files\Skype\Phone\Skype.exe" "/uri:%l" Example: skype:+14035551111?call |
skype-plugin | Skype Plugin Protocol Handler |
Something to do with adding plugins to skype? Maybe. "C:\Program Files\Skype\Plugin Manager\skypePM.exe" "/uri:%1" |
svn | SVN Protocol |
Opens TortoiseSVN to browse the repository URL specified in the URL. C:\Program Files\TortoiseSVN\bin\TortoiseProc.exe /command:repobrowser /path:"%1" |
svn+ssh | ||
tsvn | ||
webcal | Webcal Protocol |
Wikipedia describes webcal URL scheme. Webcal URL scheme description. A URL that starts with webcal:// points to an Internet location that contains a calendar in iCalendar format. "C:\Program Files\Windows Calendar\wincal.exe" /webcal "%1" Example: webcal://www.lightstalkers.org/LS.ics |
WindowsCalendar.UrlWebcal.1 | ||
zune | Zune Protocol |
Provides access to some Zune operations such as podcast subscription (via Zune Insider). "c:\Program Files\Zune\Zune.exe" -link:"%1" Example: zune://subscribe/?name=http://feeds.feedburner.com/wallstrip. |
feed | Outlook Add RSS Feed |
Identify a resource that is a feed such as Atom or RSS. Implemented by Outlook to add the indicated feed to Outlook. Feed URI scheme pre-draft document "C:\PROGRA~2\MICROS~1\Office12\OUTLOOK.EXE" /share "%1" |
im | IM Protocol |
RFC 3860 IM URI scheme description Like mailto but for instant messaging clients. Registered by Office Communicator but I was unable to get it to work as described in RFC 3860. "C:\Program Files (x86)\Microsoft Office Communicator\Communicator.exe" "%1" |
tel | Tel Protocol |
RFC 5341 - tel URI scheme IANA assignment RFC 3966 - tel URI scheme description Call phone numbers via the tel URI scheme. Implemented by Office Communicator. "C:\Program Files (x86)\Microsoft Office Communicator\Communicator.exe" "%1" |