Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.
You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.
The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.
Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.
For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.
For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c
Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.
If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.
As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.
I've made a PowerShell script to show system toast notifications with WinRT and PowerShell. Along the way I learned several interesting things.
First off calling WinRT from PowerShell involves a strange syntax. If you want to use a class you write [-Class-,-Namespace-,ContentType=WindowsRuntime] first to tell PowerShell about the type. For example here I create a ToastNotification object:
[void][Windows.UI.Notifications.ToastNotification,Windows.UI.Notifications,ContentType=WindowsRuntime];
$toast = New-Object Windows.UI.Notifications.ToastNotification -ArgumentList $xml;
And
here I call the static method CreateToastNotifier on the ToastNotificationManager class:
[void][Windows.UI.Notifications.ToastNotificationManager,Windows.UI.Notifications,ContentType=WindowsRuntime];
$notifier = [Windows.UI.Notifications.ToastNotificationManager]::CreateToastNotifier($AppUserModelId);
With
this I can call WinRT methods and this is enough to show a toast but to handle the click requires a little more work.
To handle the user clicking on the toast I need to listen to the Activated event on the Toast object. However Register-ObjectEvent doesn't handle WinRT events. To work around this I created a .NET event wrapper class to turn the WinRT event into a .NET event that Register-ObjectEvent can handle. This is based on Keith Hill's blog post on calling WinRT async methods in PowerShell. With the event wrapper class I can run the following to subscribe to the event:
function WrapToastEvent {
param($target, $eventName);
Add-Type -Path (Join-Path $myPath "PoshWinRT.dll")
$wrapper = new-object "PoshWinRT.EventWrapper[Windows.UI.Notifications.ToastNotification,System.Object]";
$wrapper.Register($target, $eventName);
}
[void](Register-ObjectEvent -InputObject (WrapToastEvent $toast "Activated") -EventName FireEvent -Action {
...
});
To handle the Activated event I want to put focus back on the PowerShell window that created the toast. To do this I need to call the Win32 function SetForegroundWindow. Doing so from PowerShell is surprisingly easy. First you must tell PowerShell about the function:
Add-Type @"
using System;
using System.Runtime.InteropServices;
public class PInvoke {
[DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)]
public static extern bool SetForegroundWindow(IntPtr hwnd);
}
"@
Then
to call:
[PInvoke]::SetForegroundWindow((Get-Process -id $myWindowPid).MainWindowHandle);
But figuring out the HWND to give to SetForegroundWindow isn't totally straight forward. Get-Process exposes a MainWindowHandle property but if you start a cmd.exe prompt and then run PowerShell inside of that, the PowerShell process has 0 for its MainWindowHandle property. We must follow up process parents until we find one with a MainWindowHandle:
$myWindowPid = $pid;
while ($myWindowPid -gt 0 -and (Get-Process -id $myWindowPid).MainWindowHandle -eq 0) {
$myWindowPid = (gwmi Win32_Process -filter "processid = $($myWindowPid)" | select ParentProcessId).ParentProcessId;
}
Quadrilateral Cowboy gameplay video
“Quadrilateral Cowboy is a game we’ve been watching with great interest ever since Thirty Flights Of Loving creator Brendon Chung first debuted it last year. It’s about hacking, but not via irritating minigames or jargon-your-problems-away Hollywood magic. Instead, you learn basic (albeit fictional) code and take down everything from laser grids to gun emplacements with a twitch of your fingers and a wriggle of your brain. It’s already an extremely clever game, and it’s quite empowering despite the fact that you play as someone who probably couldn’t even heft an assault rifle - let alone fire one. Basically, it’s a wonderfully novel idea - more Neuromancer than Deus Ex - but words only do it so much justice. Thus, I’ve decided to play it for your enrichment, in hopes that you will understand why Quadrilateral should be driving your radar haywire.”
The story of Chris Knight, living in isolation in the woods of Maine for 27 years.
'Anyone who reveals what he's learned, Chris told me, is not by his definition a true hermit. Chris had come around on the idea of himself as a hermit, and eventually embraced it. When I mentioned Thoreau, who spent two years at Walden, Chris dismissed him with a single word: “dilettante.”'
'But still, I pressed on, there must have been some grand insight revealed to him in the wild…”Get enough sleep.”'
I don’t want to brag, but I’ve been telling that people all along and I didn’t have to live alone in the woods for decades.
Internet Archive lets you play one of the earliest computer games Space War! emulated in JavaScript in the browser.
This entry covers the historical context of Space War!, and instructions for working with our in-browser emulator. The system doesn’t require installed plugins (although a more powerful machine and recent browser version is suggested).
The JSMESS emulator (a conversion of the larger MESS project) also contains a real-time portrayal of the lights and switches of a Digital PDP-1, as well as links to documentation and manuals for this $800,000 (2014 dollars) minicomputer.
Should you take the latest security scare seriously? I do, and here is what I am doing about it.
Its time to get a password manager.
Adds the yield keyword enabling you to write JS code that sort of looks like C# await.
Overview
First-class coroutines, represented as objects encapsulating suspended execution contexts (i.e., function activations). Prior art: Python, Icon, Lua, Scheme, Smalltalk.
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BROWSER_EMULATION]
"Fitbit Connect.exe"=dword:000022b8
For
those familiar with the Windows registry the above should be enough. For those not familiar, copy and paste the above into notepad, save as a file named "fitbit.reg", and then double click the reg
file and say 'Yes' to the prompt. Hopefully in the final release of Windows 8.1 this won't be an issue.
WinRT (JS and
C++)
|
JS Only
|
C++ Only
|
.NET Only
|
|
Parse
|
|
|||
Build
|
||||
Normalize
|
||||
Equality
|
|
|
||
Relative
resolution
|
||||
Encode data for
including in URI property
|
||||
Decode data extracted
from URI property
|
||||
Build Query
|
||||
Parse Query
|
My second completed app for the Windows Store was Words with Hints a companion to Words with Friends or other Scrabble like games that gives you *ahem* hints. You provide your tiles and optionally letters placed in a line on the board and Words with Hints gives you word options.
I wrote this the first time by building a regular expression to check against my dictionary of words which made for a slow app on the Surface. In subsequent release of the app I now spawn four web workers (one for each of the Surface's cores) each with its own fourth of my dictionary. Each fourth of the dictionary is a trie which makes it easy for me to discard whole chunks of possible combinations of Scrabble letters as I walk the tree of possibilities.
The dictionaries are large and takes a noticeable amount of time to load on the Surface. The best performing mechanism I found to load them is as JavaScript source files that simply define their portion of the dictionary on the global object and synchronously (only on the worker so not blocking the UI thread). Putting them into .js files means they take advantage of bytecode caching making them load faster. However because the data is mostly strings and not code there is a dramatic size increase when the app is installed. The total size of the four dictionary .js files is about 44Mb. The bytecode cache for the dictionary files is about double that 88Mb meaning the dictionary plus the bytecode cache is 132Mb.
To handle the bother of postMessage communication and web workers this was the first app in which I used my promise MessagePort project which I'll discuss more in the future.
This is the first app in which I used the Microsoft Ad SDK. It was difficult to find the install for the SDK and difficult to use their website, but once setup, the Ad SDK was easy to import into VS and easy to use in my app.
You don’t use the same password over and over right? Let’s be honest this is the day and age of the hacker. Eclectic Method brings you “Hackers” , Hollywood’s celebration of basement dwelling 128 bit encryption masters. They’ll shut down before you can trace them, hack into the mainframe…
Hack the planet!