xml - Dave's Blog

Search

Edge browser and JavaScript UWP app security model comparison

2018 Nov 29, 2:21

There are two main differences in terms of security between a JavaScript UWP app and the Edge browser:

Process Model

A JavaScript UWP app has one process (technically not true with background tasks and other edge cases but ignoring that for the moment) that runs in the corresponding appcontainer defined by the app's appx manifest. This one process is where edgehtml is loaded and is rendering HTML, talking to the network, and executing script. Specifically, the UWP main UI thread is the one where your script is running and calling into WinRT.

In the Edge browser there is a browser process running in the same appcontainer defined by its appx manifest, but there are also tab processes. These tab processes are running in restricted app containers that have fewer appx capabilities. The browser process has XAML loaded and coordinates between tabs and handles some (non-WinRT) brokering from the tab processes. The tab processes load edgehtml and that is where they render HTML, talk to the network and execute script.

There is no way to configure the JavaScript UWP app's process model but using WebViews you can approximate it. You can create out of process WebViews and to some extent configure their capabilities, although not to the same extent as the browser. The WebView processes in this case are similar to the browser's tab processes. See the MSWebViewProcess object for configuring out of process WebView creation. I also implemented out of proc WebView tabs in my JSBrowser fork.

ApplicationContentUriRules

The ApplicationContentUriRules (ACUR) section of the appx manifest lets an application define what URIs are considered app code. See a previous post for the list of ACUR effects.

Notably app code is able to access WinRT APIs. Because of this, DOM security restrictions are loosended to match what is possible with WinRT.

Privileged DOM APIs like geolocation, camera, mic etc require a user prompt in the browser before use. App code does not show the same browser prompt. There still may be an OS prompt – the same prompt that applies to any UWP app, but that’s usually per app not per origin.

App code also gets to use XMLHttpRequest or fetch to access cross origin content. Because UWP apps have separate state, cross origin here might not mean much to an attacker unless your app also has the user login to Facebook or some other interesting cross origin target.

PermalinkCommentsedge javascript security uwp web-security wwa

Win10 PWA Terminology

2018 May 31, 8:26

Folks familiar with JavaScript UWP apps in Win10 have often been confused by what PWAs in Win10 actually are. TLDR: PWAs in Win10 are simply JavaScript UWP apps. The main difference between these JS UWP Apps and our non-PWA JS UWP apps are our target end developer audience, and how we get Win10 PWAs into the Microsoft Store. See this Win10 blog post on PWAs on Win10 for related info.

Web App

On the web a subset of web sites are web apps. These are web sites that have app like behavior - that is a user might call it an app like Outlook, Maps or Gmail. And they may also have a W3C app manifest.

A subset of web apps are progressive web apps. Progressive web apps are web apps that have a W3C app manifest and a service worker. Various OSes are beginning to support PWAs as first class apps on their platform. This is true for Win10 as well in which PWAs are run as a WWA.

Windows Web App

In Win10 a WWA (Windows Web App) is an unofficial term for a JavaScript UWP app. These are UWP apps so they have an AppxManifest.xml, they are packaged in an Appx package, they run in an App Container, they use WinRT APIs, and are installed via the Microsoft Store. Specific to WWAs though, is that the AppxManifest.xml specifies a StartPage attribute identifying some HTML content to be used as the app. When the app is activated the OS will create a WWAHost.exe process that hosts the HTML content using the EdgeHtml rendering engine.

Packaged vs Hosted Web App

Within that we have a notion of a packaged web app and an HWA (hosted web app). There's no real technical distinction for the end developer between these two. The only real difference is whether the StartPage identifies remote HTML content on the web (HWA), or packaged HTML content from the app's appx package (packaged web app). An end developer may create an app that is a mix of these as well, with HTML content in the package and HTML content from the web. These terms are more like ends on a continuum and identifying two different developer scenarios since the underlying technical aspect is pretty much identical.

Win10 PWA

Win10 PWAs are simply HWAs that specify a StartPage of a URI for a PWA on the web. These are still JavaScript UWP apps with all the same behavior and abilities as other UWP apps. We have two ways of getting PWAs into the Microsoft Store as Win10 PWAs. The first is PWA Builder which is a tool that helps PWA end developers create and submit to the Microsoft Store a Win10 PWA appx package. The second is a crawler that runs over the web looking for PWAs which we convert and submit to the Store using an automated PWA Builder-like tool to create a Win10 PWA from PWAs on the web (see Welcoming PWAs to Win10 for more info). In both cases the conversion involves examining the PWAs W3C app manifest and producing a corresponding AppxManifest.xml. Not all features supported by AppxManifest.xml are also available in the W3c app manifest. But the result of PWA Builder can be a working starting point for end developers who can then update the AppxManifest.xml as they like to support features like share targets or others not available in W3C app manifests.

PermalinkCommentsJS pwa uwp web

JavaScript Microsoft Store app StartPage

2017 Jun 22, 8:58

JavaScript Microsoft Store apps have some details related to activation that are specific to JavaScript Store apps and that are poorly documented which I’ll describe here.

StartPage syntax

The StartPage attributes in the AppxManifest.xml (Package/Applications/Application/@StartPage, Package/Applications/Extensions/Extension/@StartPage) define the HTML page entry point for that kind of activation. That is, Application/@StartPage defines the entry point for tile activation, Extension[@Category="windows.protocol"]/@StartPage defines the entry point for URI handling activation, etc. There are two kinds of supported values in StartPage attributes: relative Windows file paths and absolute URIs. If the attribute doesn’t parse as an absolute URI then it is instead interpreted as relative Windows file path.

This implies a few things that I’ll declare explicitly here. Windows file paths, unlike URIs, don’t have a query or fragment, so if you are using a relative Windows file path for your StartPage attribute you cannot include anything like ‘?param=value’ at the end. Absolute URIs use percent-encoding for reserved characters like ‘%’ and ‘#’. If you have a ‘#’ in your HTML filename then you need to percent-encode that ‘#’ for a URI and not for a relative Windows file path.

If you specify a relative Windows file path, it is turned into an ms-appx URI by changing all backslashes to forward slashes, percent-encoding reserved characters, and combining the result with a base URI of ms-appx:///. Accordingly the relative Windows file paths are relative to the root of your package. If you are using a relative Windows file path as your StartPage and need to switch to using a URI so you can include a query or fragment, you can follow the same steps above.

StartPage validity

The validity of the StartPage is not determined before activation. If the StartPage is a relative Windows file path for a file that doesn’t exist, or an absolute URI that is not in the Application Content URI Rules, or something that doesn’t parse as a Windows file path or URI, or otherwise an absolute URI that fails to resolve (404, bad hostname, etc etc) then the JavaScript app will navigate to the app’s navigation error page (perhaps more on that in a future blog post). Just to call it out explicitly because I have personally accidentally done this: StartPage URIs are not automatically included in the Application Content URI Rules and if you forget to include your StartPage in your ACUR you will always fail to navigate to that StartPage.

StartPage navigation

When your app is activated for a particular activation kind, the StartPage value from the entry in your app’s manifest that corresponds to that activation kind is used as the navigation target. If the app is not already running, the app is activated, navigated to that StartPage value and then the Windows.UI.WebUI.WebUIApplication activated event is fired (more details on the order of various events in a moment). If, however, your app is already running and an activation occurs, we navigate or don’t navigate to the corresponding StartPage depending on the current page of the app. Take the app’s current top level document’s URI and if after removing the fragment it already matches the StartPage value then we won’t navigate and will jump straight to firing the WebUIApplication activated event.

Since navigating the top-level document means destroying the current JavaScript engine instance and losing all your state, this behavior might be a problem for you. If so, you can use the MSApp.pageHandlesAllApplicationActivations(true) API to always skip navigating to the StartPage and instead always jump straight to firing the WebUIApplication activated event. This does require of course that all of your pages all handle all activation kinds about which any part of your app cares.

PermalinkComments

Application Content URI Rules wildcard syntax

2017 May 31, 4:48

Application Content URI Rules (ACUR from now on) defines the bounds of the web that make up the Microsoft Store application. Package content via the ms-appx URI scheme is automatically considered part of the app. But if you have content on the web via http or https you can use ACUR to declare to Windows that those URIs are also part of your application. When your app navigates to URIs on the web those URIs will be matched against the ACUR to determine if they are part of your app or not. The documentation for how matching is done on the wildcard URIs in the ACUR Rule elements is not very helpful on MSDN so here are some notes.

Rules

You can have up to 100 Rule XML elements per ApplicationContentUriRules element. Each has a Match attribute that can be up to 2084 characters long. The content of the Match attribute is parsed with CreateUri and when matching against URIs on the web additional wildcard processing is performed. I’ll call the URI from the ACUR Rule the rule URI and the URI we compare it to found during app navigation the navigation URI.

The rule URI is matched to a navigation URI by URI component: scheme, username, password, host, port, path, query, and fragment. If a component does not exist on the rule URI then it matches any value of that component in the navigation URI. For example, a rule URI with no fragment will match a navigation URI with no fragment, with an empty string fragment, or a fragment with any value in it.

Asterisk

Each component except the port may have up to 8 asterisks. Two asterisks in a row counts as an escape and will match 1 literal asterisk. For scheme, username, password, query and fragment the asterisk matches whatever it can within the component.

Host

For the host, if the host consists of exactly one single asterisk then it matches anything. Otherwise an asterisk in a host only matches within its domain name label. For example, http://*.example.com will match http://a.example.com/ but not http://b.a.example.com/ or http://example.com/. And http://*/ will match http://example.com, http://a.example.com/, and http://b.a.example.com/. However the Store places restrictions on submitting apps that use the http://* rule or rules with an asterisk in the second effective domain name label. For example, http://*.com is also restricted for Store submission.

Path

For the path, an asterisk matches within the path segment. For example, http://example.com/a/*/c will match http://example.com/a/b/c and http://example.com/a//c but not http://example.com/a/b/b/c or http://example.com/a/c

Additionally for the path, if the path ends with a slash then it matches any path that starts with that same path. For example, http://example.com/a/ will match http://example.com/a/b and http://example.com/a/b/c/d/e/, but not http://example.com/b/.

If the path doesn’t end with a slash then there is no suffix matching performed. For example, http://example.com/a will match only http://example.com/a and no URIs with a different path.

As a part of parsing the rule URI and the navigation URI, CreateUri will perform URI normalization and so the hostname and scheme will be made lower case (casing matters in all other parts of the URI and case sensitive comparisons will be performed), IDN normalization will be performed, ‘.’ and ‘..’ path segments will be resolved and other normalizations as described in the CreateUri documentation.

PermalinkCommentsapplication-content-uri-rules programming windows windows-store

WinRT Toast from PowerShell

2016 Jun 15, 3:54

I've made a PowerShell script to show system toast notifications with WinRT and PowerShell. Along the way I learned several interesting things.

First off calling WinRT from PowerShell involves a strange syntax. If you want to use a class you write [-Class-,-Namespace-,ContentType=WindowsRuntime] first to tell PowerShell about the type. For example here I create a ToastNotification object:

[void][Windows.UI.Notifications.ToastNotification,Windows.UI.Notifications,ContentType=WindowsRuntime];
$toast = New-Object Windows.UI.Notifications.ToastNotification -ArgumentList $xml;
And here I call the static method CreateToastNotifier on the ToastNotificationManager class:
[void][Windows.UI.Notifications.ToastNotificationManager,Windows.UI.Notifications,ContentType=WindowsRuntime];
$notifier = [Windows.UI.Notifications.ToastNotificationManager]::CreateToastNotifier($AppUserModelId);
With this I can call WinRT methods and this is enough to show a toast but to handle the click requires a little more work.

To handle the user clicking on the toast I need to listen to the Activated event on the Toast object. However Register-ObjectEvent doesn't handle WinRT events. To work around this I created a .NET event wrapper class to turn the WinRT event into a .NET event that Register-ObjectEvent can handle. This is based on Keith Hill's blog post on calling WinRT async methods in PowerShell. With the event wrapper class I can run the following to subscribe to the event:

function WrapToastEvent {
param($target, $eventName);

Add-Type -Path (Join-Path $myPath "PoshWinRT.dll")
$wrapper = new-object "PoshWinRT.EventWrapper[Windows.UI.Notifications.ToastNotification,System.Object]";
$wrapper.Register($target, $eventName);
}

[void](Register-ObjectEvent -InputObject (WrapToastEvent $toast "Activated") -EventName FireEvent -Action {
...
});

To handle the Activated event I want to put focus back on the PowerShell window that created the toast. To do this I need to call the Win32 function SetForegroundWindow. Doing so from PowerShell is surprisingly easy. First you must tell PowerShell about the function:

Add-Type @"
using System;
using System.Runtime.InteropServices;
public class PInvoke {
[DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)]
public static extern bool SetForegroundWindow(IntPtr hwnd);
}
"@
Then to call:
[PInvoke]::SetForegroundWindow((Get-Process -id $myWindowPid).MainWindowHandle);

But figuring out the HWND to give to SetForegroundWindow isn't totally straight forward. Get-Process exposes a MainWindowHandle property but if you start a cmd.exe prompt and then run PowerShell inside of that, the PowerShell process has 0 for its MainWindowHandle property. We must follow up process parents until we find one with a MainWindowHandle:

$myWindowPid = $pid;
while ($myWindowPid -gt 0 -and (Get-Process -id $myWindowPid).MainWindowHandle -eq 0) {
$myWindowPid = (gwmi Win32_Process -filter "processid = $($myWindowPid)" | select ParentProcessId).ParentProcessId;
}
PermalinkComments.net c# powershell toast winrt

Windows Store App WebView Cross Origin XMLHttpRequest Behavior

2016 Jun 2, 6:45

TL;DR: Web content in a JavaScript Windows Store app or WebView in a Windows Store app that has full access to WinRT also gets to use XHR unrestricted by cross origin checks.

By default web content in a WebView control in a Windows Store App has the same sort of limitations as that web content in a web browser. However, if you give the URI of that web content full access to WinRT, then the web content also gains the ability to use XMLHttpRequest unrestricted by cross origin checks. This means no CORS checks and no OPTIONS requests. This only works if the web content's URI matches a Rule in the ApplicationContentUriRules of your app's manifest and that Rule declares WindowsRuntimeAccess="all". If it declares WinRT access as 'None' or 'AllowForWebOnly' then XHR acts as it normally does.

In terms of security, if you've already given a page access to all of WinRT which includes the HttpRequest class and other networking classes that don't perform cross origin checks, then allowing XHR to skip CORS doesn't make things worse.

PermalinkCommentsjavascript uwa uwp web webview windows winrt xhr

HTTP Compression Documentation Reference

2012 Jun 13, 3:08
There's a lot of name reuse in HTTP compression so I've made the following to help myself keep it straight.
HTTP Content Coding Token gzip deflate compress
An encoding format produced by the file compression program "gzip" (GNU zip) The "zlib" format as described in RFC 1950. The encoding format produced by the common UNIX file compression program "compress".
Data Format GZIP file format ZLIB Compressed Data Format The compress program's file format
Compression Method Deflate compression method LZW
Deflate consists of LZ77 and Huffman coding

Compress doesn't seem to be supported by popular current browsers, possibly due to its past with patents.

Deflate isn't done correctly all the time. Some servers would send the deflate data format instead of the zlib data format and at least some versions of Internet Explorer expect deflate data format instead of zlib data format.

PermalinkCommentscompress compression deflate gzip http http-header technical zlib

"Additional Media Type Structured Syntax Suffixes" - Tony Hansen

2012 Apr 26, 3:15

This document defines several Structured Syntax Suffixes for use with media type registrations. In particular, it defines and registers the “+json”, “+ber”, “+der”, “+fastinfoset”, “+wbxml” and “+zip” Structured Syntax Suffixes, and updates the “+xml” Structured Syntax Suffix registration.

PermalinkCommentstechnical json mime ietf rfc standard

Client Side Cross Domain Data YQL Hack

2012 Feb 27, 2:28

One of the more limiting issues of writing client side script in the browser is the same origin limitations of XMLHttpRequest. The latest version of all browsers support a subset of CORS to allow servers to opt-in particular resources for cross-domain access. Since IE8 there's XDomainRequest and in all other browsers (including IE10) there's XHR L2's cross-origin request features. But the vast majority of resources out on the web do not opt-in using CORS headers and so client side only web apps like a podcast player or a feed reader aren't doable.

One hack-y way around this I've found is to use YQL as a CORS proxy. YQL applies the CORS header to all its responses and among its features it allows a caller to request an arbitrary XML, HTML, or JSON resource. So my network helper script first attempts to access a URI directly using XDomainRequest if that exists and XMLHttpRequest otherwise. If that fails it then tries to use XDR or XHR to access the URI via YQL. I wrap my URIs in the following manner, where type is either "html", "xml", or "json":

        yqlRequest = function(uri, method, type, onComplete, onError) {
var yqlUri = "http://query.yahooapis.com/v1/public/yql?q=" +
encodeURIComponent("SELECT * FROM " + type + ' where url="' + encodeURIComponent(uri) + '"');

if (type == "html") {
yqlUri += encodeURIComponent(" and xpath='/*'");
}
else if (type == "json") {
yqlUri += "&callback=&format=json";
}
...

This also means I can get JSON data itself without having to go through JSONP.
PermalinkCommentsxhr javascript yql client-side technical yahoo xdr cors

"The application/opensearchdescription xml media type" - Frank Ellermann

2011 Nov 14, 1:26PermalinkCommentstechnical mime mime-type opensearch xml ietf

SRU: Search/Retrieval via URL -- SRU, CQL and ZeeRex (Standards, Library of Congress)

2011 Apr 18, 4:27"SRU is a standard XML-focused search protocol for Internet search queries, utilizing CQL (Contextual Query Language), a standard syntax for representing queries."PermalinkCommentsstandards search library metadata xml uri technical library-of-congress

Powershell to test your XPath

2011 Apr 14, 5:11This page and esp. the final comment on the page were very helpful with describing how to parse XML in PowerShell.PermalinkCommentspowershell xml xpath technical programming

RFC 5854 - The Metalink Download Description Format

2010 Jun 1, 6:46"Metalink describes download locations (mirrors), cryptographic hashes, and other information. Clients can transparently use this information to reliably transfer files."PermalinkCommentstechnical internet download web url xml metalink

Client-side Cross-domain Security

2010 Mar 31, 7:54"Summary: Exploring cross-domain threats and use cases, security principles for cross-origin requests, and finally, weighing the risks for developers to enhance cross-domain access from web applications running in the browser."PermalinkCommentstechnical msdn microsoft security xss XMLHttpRequest web browser

Part2 - browsersec - Browser Security Handbook, part 2 - Project Hosting on Google Code

2010 Mar 10, 5:19Covers same origin policy and how it applies to different HTML and HTTP features.PermalinkCommentstechnical web browser javascript csrf ajax html security xss XMLHttpRequest

sitemaps.org - Protocol

2010 Jan 25, 8:31PermalinkCommentssitemap google xml search web html technical reference

The Metalink Download Description Format

2009 Dec 28, 2:19"This document specifies Metalink, an XML-based download description format. Metalink describes download locations (mirrors), checksums, and other information. Clients can transparently use this information to reliably transfer files."PermalinkCommentsxml download browser web url todo

Waooooooow, Ample SDK - <Glazblog/>

2009 Dec 1, 5:55A cross browser javascript implementation of SVG, XUL, portions of HTML5 and more. Check out their demos. "Ample SDK, a must-see: cross-browser (Gecko, Webkit, Opera, Chrome, and even IE 5.5+ !!), XInclude 1.0, XML Events 1.0, XML Schema, SMIL 3.0, REX 1.0, XBL 2.0 (!), SVG, XUL (cross-browser !), HTML5, XForms, ..., superb demos (SVG-based @shepazu in IE, wow...), dual MIT/GPL licensing terms, open-source"PermalinkCommentstechnical browser svg xul webkit opera ie javascript web html5

Sam Ruby: Chromie Don’t Play That

2009 Sep 24, 3:58"Put more constructively, if GCF mentioned application/xhtml+xml AND intercepted it, my site would “just work”. But that wouldn’t be an “opt in”, a concept that Ian Hickson once described as yet another quirks mode switch."PermalinkCommentschrome google web browser extension webbrowser mime xml xhtml technical

HTML vs. XHTML - WHATWG Wiki

2009 Sep 10, 6:42"Although HTML and XHTML appear to have similarities in their syntax, they are significantly different in many ways."PermalinkCommentshtml html5 xml xhtml whatwg wiki technical
Older Entries Creative Commons License Some rights reserved.