API page 3 - Dave's Blog

Search
My timeline on Mastodon

Quadrilateral Cowboy gameplay video “Quadrilateral Cowboy...

2014 Oct 6, 2:41


Quadrilateral Cowboy gameplay video

“Quadrilateral Cowboy is a game we’ve been watching with great interest ever since Thirty Flights Of Loving creator Brendon Chung first debuted it last year. It’s about hacking, but not via irritating minigames or jargon-your-problems-away Hollywood magic. Instead, you learn basic (albeit fictional) code and take down everything from laser grids to gun emplacements with a twitch of your fingers and a wriggle of your brain. It’s already an extremely clever game, and it’s quite empowering despite the fact that you play as someone who probably couldn’t even heft an assault rifle - let alone fire one. Basically, it’s a wonderfully novel idea - more Neuromancer than Deus Ex - but words only do it so much justice. Thus, I’ve decided to play it for your enrichment, in hopes that you will understand why Quadrilateral should be driving your radar haywire.”

PermalinkCommentsgame video-game hack computer

From Inside Edward Snowden’s Life as a Robot: Wizner had...

2014 Jun 23, 7:04


From Inside Edward Snowden’s Life as a Robot:

Wizner had to jump on a phone call during a meeting with his whistleblower client. When he got off the phone, he found that Snowden had rolled the bot into civil liberties lawyer Jameel Jaffer’s office and was discussing the 702 provision of the Foreign Intelligence Surveillance Act. “It was kind of cool,” Wizner says.

It is neat but they’re marketing video is at times strangely terrifying. Put different music on when the Susan-bot comes up behind the unknowing Mark and this could be a horror movie trailer.

PermalinkCommentsedward-snowden beam robot telepresence

On exploiting security issues in botnet C&C...

2014 Jun 23, 4:26


On exploiting security issues in botnet C&C software:

Hackers “are learning that it’s not so easy to write secure code,” Toro says. “Most of us in the business of securing our applications and systems know that bulletproofing software is an extremely expensive and exhaustive undertaking. Malware creators who have to look to their own defences would have to slow down the production of new attacks.”

FYI, if you want to know what it looks like when you hack a hacker, look no further than the seminal 1995 film Hackers.

PermalinkCommentstechnical security

Netflix API : Retiring the Netflix Public API

2014 Jun 15, 3:02

First they came for our RSS feeds and I said nothing…

PermalinkCommentstechnical Netflix web api api

ios - Capture image via captureStillImageAsynchronouslyFromConnection with no shutter sound - Stack Overflow

2014 May 24, 2:42

The best hack I’ve seen in a while. With no way to disable the shutter sound from the capture photo API, the developer creates the inverse waveform of the shutter sound and plays it at the same time to cancel out the shutter sound.

PermalinkCommentstechnical humor ios photo sound

Debugging anecdote - the color transparent black breaks accessibility

2014 May 22, 10:36

Some time back while I was working on getting the Javascript Windows Store app platform running on Windows Phone (now available on the last Windows Phone release!) I had an interesting bug that in retrospect is amusing.

I had just finished a work item to get accessibility working for JS WinPhone apps when I got a new bug: With some set of JS apps, accessibility appeared to be totally broken. At that time in development the only mechanism we had to test accessibility was a test tool that runs on the PC, connects to the phone, and dumps out the accessibility tree of whatever app is running on the phone. In this bug, the tool would spin for a while and then timeout with an error and no accessibility information.

My first thought was this was an issue in my new accessibility code. However, debugging with breakpoints on my code I could see none of my code was run nor the code that should call it. The code that called that code was a more generic messaging system that hit my breakpoints constantly.

Rather than trying to work backward from the failure point, I decided to try and narrow down the repro and work forwards from there. One thing all the apps with the bug had in common was their usage of WinJS, but not all WinJS apps demonstrated the issue. Using a binary search approach on one such app I removed unrelated app code until all that was left was the app's usage of the WinJS AppBar and the bug still occurred. I replaced the WinJS AppBar usage with direct usage of the underlying AppBar WinRT APIs and continued.

Only some calls to the AppBar WinRT object produced the issue:

        var appBar = Windows.UI.WebUI.Core.WebUICommandBar.getForCurrentView(); 
// appBar.opacity = 1;
// appBar.closeDisplayMode = Windows.UI.WebUI.Core.WebUICommandBarClosedDisplayMode.default;
appBar.backgroundColor = Windows.UI.Colors.white; // Bug!
Just setting the background color appeared to cause the issue and I didn't even have to display the AppBar. Through additional trial and error I was blown away to discover that some colors I would set caused the issue and other colors did not. Black wouldn't cause the issue but transparent black would. So would aqua but not white.

I eventually realized that predefined WinRT color values like Windows.UI.Colors.aqua would cause the issue while JS literal based colors didn't cause the issue (Windows.UI.Color is a WinRT struct which projects in JS as a JS literal object with the struct members as JS object properties so its easy to write something like {r: 0, g: 0, b: 0, a: 0} to make a color) and I had been mixing both in my tests without realizing there would be a difference. I debugged into the backgroundColor property setter that consumed the WinRT color struct to see what was different between Windows.UI.Colors.black and {a: 1, r: 0, g: 0, b: 0} and found the two structs to be byte wise exactly the same.

On a hunch I tried my test app with only a reference to the color and otherwise no interaction with the AppBar and not doing anything with the actual reference to the color: Windows.UI.Colors.black;. This too caused the issue. I knew that the implementation for these WinRT const values live in a DLL and guessed that something in the code to create these predefined colors was causing the issue. I debugged in and no luck. Now I also have experienced crusty code that would do exciting things in its DllMain, the function that's called when a DLL is loaded into the process so I tried modifying my C++ code to simply LoadLibrary the DLL containing the WinRT color definition, windows.ui.xaml.dll and found the bug still occurred! A short lived moment of relief as the world seemed to make sense again.

Debugging into DllMain nothing interesting happened. There were interesting calls in there to be sure, but all of them behind conditions that were false. I was again stumped. On another hunch I tried renaming the DLL and only LoadLibrary'ing it and the bug went away. I took a different DLL renamed it windows.ui.xaml.dll and tried LoadLibrary'ing that and the bug came back. Just the name of the DLL was causing the issue.

I searched for the DLL name in our source code index and found hits in the accessibility tool. Grinning I opened the source to find that the accessibility tool's phone side service was trying to determine if a process belonged to a XAML app or not because XAML apps had a different accessibility contract. It did this by checking to see if windows.ui.xaml.dll was loaded in the target process.

At this point I got to fix my main issue and open several new bugs for the variety of problems I had just run into. This is a how to on writing software that is difficult to debug.

PermalinkCommentsbug debug javascript JS technical windows winrt

Serializing JavaScript Promise Execution

2013 Aug 10, 3:07
Occasionally I have need to run a set of unrelated promises in series, for instance an object dealing with a WinRT camera API that can only execute one async operation at a time, or an object handling postMessage message events and must resolve associated async operations in the same order it received the requests. The solution is very simply to keep track of the last promise and when adding a new promise in serial add a continuation of the last promise to execute the new promise and point the last promise at the result. I encapsulate the simple solution in a simple constructor:

    function PromiseExecutionSerializer() {
var lastPromise = WinJS.Promise.wrap(); // Start with an empty fulfilled promise.

this.addPromiseForSerializedExecution = function(promiseFunction) {
lastPromise = lastPromise.then(function () {
// Don't call directly so next promise doesn't get previous result parameter.
return promiseFunction();
});
}
}

The only thing to watch out for is to ensure you don't pass the result of a previous promise onto a subsequent promise that is unrelated.
PermalinkCommentsasync javascript promise technical

URI functions in Windows Store Applications

2013 Jul 25, 1:00

Summary

The Modern SDK contains some URI related functionality as do libraries available in particular projection languages. Unfortunately, collectively these APIs do not cover all scenarios in all languages. Specifically, JavaScript and C++ have no URI building APIs, and C++ additionally has no percent-encoding/decoding APIs.
WinRT (JS and C++)
JS Only
C++ Only
.NET Only
Parse
 
Build
Normalize
Equality
 
 
Relative resolution
Encode data for including in URI property
Decode data extracted from URI property
Build Query
Parse Query
The Windows.Foudnation.Uri type is not projected into .NET modern applications. Instead those applications use System.Uri and the platform ensures that it is correctly converted back and forth between Windows.Foundation.Uri as appropriate. Accordingly the column marked WinRT above is applicable to JS and C++ modern applications but not .NET modern applications. The only entries above applicable to .NET are the .NET Only column and the WwwFormUrlDecoder in the bottom left which is available to .NET.

Scenarios

Parse

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS, and by System.Uri in .NET.
Parsing a URI pulls it apart into its basic components without decoding or otherwise modifying the contents.
var uri = new Windows.Foundation.Uri("http://example.com/path%20segment1/path%20segment2?key1=value1&key2=value2");
console.log(uri.path);// /path%20segment1/path%20segment2

WsDecodeUrl (C++)

WsDecodeUrl is not suitable for general purpose URI parsing.  Use Windows.Foundation.Uri instead.

Build (C#)

URI building is only available in C# via System.UriBuilder.
URI building is the inverse of URI parsing: URI building allows the developer to specify the value of basic components of a URI and the API assembles them into a URI. 
To work around the lack of a URI building API developers will likely concatenate strings to form their URIs.  This can lead to injection bugs if they don’t validate or encode their input properly, but if based on trusted or known input is unlikely to have issues.
            Uri originalUri = new Uri("http://example.com/path1/?query");
            UriBuilder uriBuilder = new UriBuilder(originalUri);
            uriBuilder.Path = "/path2/";
            Uri newUri = uriBuilder.Uri; // http://example.com/path2/?query

WsEncodeUrl (C++)

WsEncodeUrl, in addition to building a URI from components also does some encoding.  It encodes non-US-ASCII characters as UTF8, the percent, and a subset of gen-delims based on the URI property: all :/?#[]@ are percent-encoded except :/@ in the path and :/?@ in query and fragment.
Accordingly, WsEncodeUrl is not suitable for general purpose URI building.  It is acceptable to use in the following cases:
- You’re building a URI out of non-encoded URI properties and don’t care about the difference between encoded and decoded characters.  For instance you’re the only one consuming the URI and you uniformly decode URI properties when consuming – for instance using WsDecodeUrl to consume the URI.
- You’re building a URI with URI properties that don’t contain any of the characters that WsEncodeUrl encodes.

Normalize

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET.  Normalization is applied during construction of the Uri object.
URI normalization is the application of URI normalization rules (including DNS normalization, IDN normalization, percent-encoding normalization, etc.) to the input URI.
        var normalizedUri = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/");
        console.log(normalizedUri.absoluteUri); // http://example.com/path%20foo/
This is modulo Win8 812823 in which the Windows.Foundation.Uri.AbsoluteUri property returns a normalized IRI not a normalized URI.  This bug does not affect System.Uri.AbsoluteUri which returns a normalized URI.

Equality

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET. 
URI equality determines if two URIs are equal or not necessarily equal.
            var uri1 = new Windows.Foundation.Uri("HTTP://EXAMPLE.COM/p%61th foo/"),
                uri2 = new Windows.Foundation.Uri("http://example.com/path%20foo/");
            console.log(uri1.equals(uri2)); // true

Relative resolution

This functionality is provided by the WinRT API Windows.Foundation.Uri in C++ and JS and by System.Uri in .NET 
Relative resolution is a function that given an absolute URI A and a relative URI B, produces a new absolute URI C.  C is the combination of A and B in which the basic components specified in B override or combine with those in A under rules specified in RFC 3986.
        var baseUri = new Windows.Foundation.Uri("http://example.com/index.html"),
            relativeUri = "/path?query#fragment",
            absoluteUri = baseUri.combineUri(relativeUri);
        console.log(baseUri.absoluteUri);       // http://example.com/index.html
        console.log(absoluteUri.absoluteUri);   // http://example.com/path?query#fragment

Encode data for including in URI property

This functionality is available in JavaScript via encodeURIComponent and in C# via System.Uri.EscapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now have Windows.Foundation.Uri.EscapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Encoding data for inclusion in a URI property is necessary when constructing a URI from data.  In all the above cases the developer is dealing with a URI or substrings of a URI and so the strings are all encoded as appropriate. For instance, in the parsing example the path contains “path%20segment1” and not “path segment1”.  To construct a URI one must first construct the basic components of the URI which involves encoding the data.  For example, if one wanted to include “path segment / example” in the path of a URI, one must percent-encode the ‘ ‘ since it is not allowed in a URI, as well as the ‘/’ since although it is allowed, it is a delimiter and won’t be interpreted as data unless encoded.
If a developer does not have this API provided they can write it themselves.  Percent-encoding methods appear simple to write, but the difficult part is getting the set of characters to encode correct, as well as handling non-US-ASCII characters.
        var uri = new Windows.Foundation.Uri("http://example.com" +
            "/" + Windows.Foundation.Uri.escapeComponent("path segment / example") +
            "?key=" + Windows.Foundation.Uri.escapeComponent("=&?#"));
        console.log(uri.absoluteUri); // http://example.com/path%20segment%20%2F%20example?key=%3D%26%3F%23

WsEncodeUrl (C++)

In addition to building a URI from components, WsEncodeUrl also percent-encodes some characters.  However the API is not recommend for this scenario given the particular set of characters that are encoded and the convoluted nature in which a developer would have to use this API in order to use it for this purpose.
There are no general purpose scenarios for which the characters WsEncodeUrl encodes make sense: encode the %, encode a subset of gen-delims but not also encode the sub-delims.  For instance this could not replace encodeURIComponent in a C++ version of the following code snippet since if ‘value’ contained ‘&’ or ‘=’ (both sub-delims) they wouldn’t be encoded and would be confused for delimiters in the name value pairs in the query:
"http://example.com/?key=" + Windows.Foundation.Uri.escapeComponent(value)
Since WsEncodeUrl produces a string URI, to obtain the property they want to encode they’d need to parse the resulting URI.  WsDecodeUrl won’t work because it decodes the property but Windows.Foundation.Uri doesn’t decode.  Accordingly the developer could run their string through WsEncodeUrl then Windows.Foundation.Uri to extract the property.

Decode data extracted from URI property

This functionality is available in JavaScript via decodeURIComponent and in C# via System.Uri.UnescapeDataString. Although the two methods mentioned above will suffice for this purpose, they do not perform exactly the same operation.
Additionally we now also have Windows.Foundation.Uri.UnescapeComponent in WinRT, which is available in JavaScript and C++ (not C# since it doesn’t have access to Windows.Foundation.Uri).  This is also slightly different from the previously mentioned mechanisms but works best for this purpose.
Decoding is necessary when extracting data from a parsed URI property.  For example, if a URI query contains a series of name and value pairs delimited by ‘=’ between names and values, and by ‘&’ between pairs, one must first parse the query into name and value entries and then decode the values.  It is necessary to make this an extra step separate from parsing the URI property so that sub-delimiters (in this case ‘&’ and ‘=’) that are encoded will be interpreted as data, and those that are decoded will be interpreted as delimiters.
If a developer does not have this API provided they can write it themselves.  Percent-decoding methods appear simple to write, but have some tricky parts including correctly handling non-US-ASCII, and remembering not to decode .
In the following example, note that if unescapeComponent were called first, the encoded ‘&’ and ‘=’ would be decoded and interfere with the parsing of the name value pairs in the query.
            var uri = new Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            uri.query.substr(1).split("&").forEach(
                function (keyValueString) {
                    var keyValue = keyValueString.split("=");
                    console.log(Windows.Foundation.Uri.unescapeComponent(keyValue[0]) + ": " + Windows.Foundation.Uri.unescapeComponent(keyValue[1]));
                    // foo: bar
                    // array: ['','&','=','#']
                });

WsDecodeUrl (C++)

Since WsDecodeUrl decodes all percent-encoded octets it could be used for general purpose percent-decoding but it takes a URI so would require the dev to construct a stub URI around the string they want to decode.  For example they could prefix “http:///#” to their string, run it through WsDecodeUrl and then extract the fragment property.  It is convoluted but will work correctly.

Parse Query

The query of a URI is often encoded as application/x-www-form-urlencoded which is percent-encoded name value pairs delimited by ‘&’ between pairs and ‘=’ between corresponding names and values.
In WinRT we have a class to parse this form of encoding using Windows.Foundation.WwwFormUrlDecoder.  The queryParsed property on the Windows.Foundation.Uri class is of this type and created with the query of its Uri:
    var uri = Windows.Foundation.Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
    uri.queryParsed.forEach(
        function (pair) {
            console.log("name: " + pair.name + ", value: " + pair.value);
            // name: foo, value: bar
            // name: array, value: ['','&','=','#']
        });
    console.log(uri.queryParsed.getFirstValueByName("array")); // ['','&','=','#']
The QueryParsed property is only on Windows.Foundation.Uri and not System.Uri and accordingly is not available in .NET.  However the Windows.Foundation.WwwFormUrlDecoder class is available in C# and can be used manually:
            Uri uri = new Uri("http://example.com/?foo=bar&array=%5B%27%E3%84%93%27%2C%27%26%27%2C%27%3D%27%2C%27%23%27%5D");
            WwwFormUrlDecoder decoder = new WwwFormUrlDecoder(uri.Query);
            foreach (IWwwFormUrlDecoderEntry entry in decoder)
            {
                System.Diagnostics.Debug.WriteLine("name: " + entry.Name + ", value: " + entry.Value);
                // name: foo, value: bar
                // name: array, value: ['','&','=','#']
            }
 

Build Query

To build a query of name value pairs encoded as application/x-www-form-urlencoded there is no WinRT API to do this directly.  Instead a developer must do this manually making use of the code described in “Encode data for including in URI property”.
In terms of public releases, this property is only in the RC and later builds.
For example in JavaScript a developer may write:
            var uri = new Windows.Foundation.Uri("http://example.com/"),
                query = "?" + Windows.Foundation.Uri.escapeComponent("array") + "=" + Windows.Foundation.Uri.escapeComponent("['','&','=','#']");
 
            console.log(uri.combine(new Windows.Foundation.Uri(query)).absoluteUri); // http://example.com/?array=%5B'%E3%84%93'%2C'%26'%2C'%3D'%2C'%23'%5D
 
PermalinkCommentsc# c++ javascript technical uri windows windows-runtime windows-store

WinRT PropertySet Changed Event Danger

2013 Jul 8, 1:46

The Windows Runtime API Windows.Foundation.Collections.PropertySet class​ is a nice string name to object value map that has a changed event that fires when the contents of the map is modified. Be careful with this event because it fires synchronously from the thread on which the PropertySet was modified. If modified from the UI thread, the UI thread will then wait as it synchronously dispatches the changed event to all listeners which could lead to performance issues or especially from the UI thread deadlock. For instance, deadlock if you have two threads both trying to tell each other about changed events for different PropertySets.

PermalinkCommentsdeadlock development propertyset windows windows-runtime winrt

Windows Store on Windows 8 Fun For Independent Developers

2013 Jun 24, 1:00
Having worked on Windows 8 I'm not in a neutral position to review aspects of it, however I'll say from a high level I love taking the following various positives from smart phone apps and app stores and applying it to the desktop:
  • Independent developers can easily publish apps.
  • One trusted place for a user to find apps.
  • User can trust apps are limited to a declared set of capabilities.
  • One common and easy way for users to buy and try apps.
  • Easy mechanism for independent developers to collect revenue.
Relieving the independent developer of software development overhead, in this case Windows taking care of distribution and sales infrastructure is wonderful for me with my third party developer hat on. This combined with my new found fun of developing in JavaScript and the new Windows Runtime APIs means I've been implementing and finishing various ideas I've had - some for fun and some for productivity on my Surface. Development notes to follow.
PermalinkCommentsstore technical windows windows-store

Sci-fi short stories disguised as Internet docs

2013 May 29, 2:48
The recent short story Twitter API returning results that do not respect arrow of time by Tim May written as a Twitter bug report reminded me of a few other short sci-fi stories written in the style of some sort of Internet document:
PermalinkCommentscsc fiction sci-fi Scifi time-travel twitter

This might be the strangest release of classic Chicago label...

2013 May 17, 5:43


This might be the strangest release of classic Chicago label Trax yet! The clue’s in the title - it’s Daft Punk brassified. We get four classics by the world’s most famous Gallic robot duo: “Harder, Better, Faster, Stronger” gets turned into a 1940s Dick Tracy-style riff-off with every form of trumpet imaginable, “Around The World” mixes wind instruments with that famous vocal mantra, “Da Funk” features plenty of sassy brass and “One More Time” wraps things up on a swingin’, jazzy high.

PermalinkCommentsSoundCloud Iamjasonalexander Brass Music music cover daft-punk

wilwheaton: owlturdcomix: Thoughts I have instead of smart...

2013 May 13, 2:31




wilwheaton:

owlturdcomix:

Thoughts I have instead of smart thoughts.

http://i.imgur.com/b9h1rc5.png

Owl Turd is rapidly becoming one of my favourite webcomics.

This may have been a Serial Experiments Lain episode synopsis.

PermalinkCommentshumor map

Stripe CTF - Level 8

2012 Dec 7, 2:07
Level 8 of the Stripe CTF is a password server that returns success: true if and only if the password provided matches the password stored directly via a RESTful API and optionally indirectly via a callback URI. The solution is side channel attack like a timing attack but with ports instead of time.

(I found this in my drafts folder and had intended to post a while ago.)

Code

    def nextServerCallback(self, data):
parsed_data = json.loads(data)
# Chunk was wrong!
if not parsed_data['success']:
# Defend against timing attacks
remaining_time = self.expectedRemainingTime()
self.log_info('Going to wait %s seconds before responding' %
remaining_time)
reactor.callLater(remaining_time, self.sendResult, False)
return

self.checkNext()

Issue

The password server breaks the target password into four pieces and stores each on a different server. When a password request is sent to the main server it makes requests to the sub-servers for each part of the password request. It does this in series and if any part fails, then it stops midway through. Password requests may also be made with corresponding URI callbacks and after the server decides on the password makes an HTTP request on the provided URI callbacks saying if the password was success: true or false.
A timing attack looks at how long it took for a password to be rejected and longer times could mean a longer prefix of the password was correct allowing for a directed brute force attack. Timing attacks are prevented in this case by code on the password server that attempts to wait the same amount of time, even if the first sub-server responds with false. However, the server uses sequential outgoing port numbers shared between the requests to the sub-servers and the callback URIs. Accordingly, we can examine the port numbers on our callback URIs to direct a brute force attack.
If the password provided is totally incorrect then the password server will contact one sub-server and then your callback URI. So if you see the remote server's port number go up by two when requesting your callback URI, you know the password is totally incorrect. If by three then you know the first fourth of the password is correct and the rest is incorrect. If by four then two fourths of the password is correct. If by five then four sub-servers were contacted so you need to rely on the actual content of the callback URI request of 'success: true' or 'false' since you can't tell from the port change if the password was totally correct or not.
The trick in the real world is false positives. The port numbers are sequential over the system, so if the password server is the only thing making outgoing requests then its port numbers will also be sequential, however other things on the system can interrupt this. This means that the password server could contact three sub-servers and normally you'd see the port number increase by four, but really it could increase by four or more because of other things running on the system. To counteract this I ran in cycles: brute forcing the first fourth of the password and removing any entry that gets a two port increase and keeping all others. Eventually I could remove all but the correct first fourth of the password. And so on for the next parts of the password.
I wrote my app to brute force this in Python. This was my first time writing Python code so it is not pretty.
PermalinkCommentsbrute-force password python side-channel technical web

Windows Remote Desktop via Internet

2012 Dec 7, 2:04
To setup my home Windows dev box to be accessible from outside I followed two main steps:
Last time I had to do this there was a service named dynamicdns.org which seems to still exist but no longer appears to be free. Instead I used dnsdynamic.org which is free and has a web API as well as links to and instructions for setting up native tools to dynamically update my IP address.
PermalinkComments

Stripe CTF - Level 7

2012 Sep 13, 5:00

Level 7 of the Stripe CTF involved running a length extension attack on the level 7 server's custom crypto code.

Code

@app.route('/logs/')
@require_authentication
def logs(id):
rows = get_logs(id)
return render_template('logs.html', logs=rows)

...

def verify_signature(user_id, sig, raw_params):
# get secret token for user_id
try:
row = g.db.select_one('users', {'id': user_id})
except db.NotFound:
raise BadSignature('no such user_id')
secret = str(row['secret'])

h = hashlib.sha1()
h.update(secret + raw_params)
print 'computed signature', h.hexdigest(), 'for body', repr(raw_params)
if h.hexdigest() != sig:
raise BadSignature('signature does not match')
return True

Issue

The level 7 web app is a web API in which clients submit signed RESTful requests and some actions are restricted to particular clients. The goal is to view the response to one of the restricted actions. The first issue is that there is a logs path to display the previous requests for a user and although the logs path requires the client to be authenticatd, it doesn't restrict the logs you view to be for the user for which you are authenticated. So you can manually change the number in the '/logs/[#]' to '/logs/1' to view the logs for the user ID 1 who can make restricted requests. The level 7 web app can be exploited with replay attacks but you won't find in the logs any of the restricted requests we need to run for our goal. And we can't just modify the requests because they are signed.

However they are signed using their own custom signing code which can be exploited by a length extension attack. All Merkle–Damgård hash algorithms (which includes MD5, and SHA) have the property that if you hash data of the form (secret + data) where data is known and the length but not content of secret is known you can construct the hash for a new message (secret + data + padding + newdata) where newdata is whatever you like and padding is determined using newdata, data, and the length of secret. You can find a sha-padding.py script on VNSecurity blog that will tell you the new hash and padding per the above. With that I produced my new restricted request based on another user's previous request. The original request was the following.

count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
The new request with padding and my new content was the following.
count=10&lat=37.351&user_id=1&long=%2D119.827&waffle=eggo%80%02%28&waffle=liege|sig:8dbd9dfa60ef3964b1ee0785a68760af8658048c
My new data in the new request is able to overwrite the waffle parameter because their parser fills in a map without checking if the parameter existed previously.

Notes

Code review red flags included custom crypto looking code. However I am not a crypto expert and it was difficult for me to find the solution to this level.

PermalinkCommentshash internet length-extension security sha1 stripe-ctf technical web

Stripe CTF - SQL injections (Levels 0 & 3)

2012 Sep 5, 9:10

Stripe's web security CTF's level 0 and level 3 had SQL injection solutions described below.

Level 0

Code

app.get('/*', function(req, res) {
var namespace = req.param('namespace');

if (namespace) {
var query = 'SELECT * FROM secrets WHERE key LIKE ? || ".%"';
db.all(query, namespace, function(err, secrets) {

Issue

There's no input validation on the namespace parameter and it is injected into the SQL query with no encoding applied. This means you can use the '%' character as the namespace which is the wildcard character matching all secrets.

Notes

Code review red flag was using strings to query the database. Additional levels made this harder to exploit by using an API with objects to construct a query rather than strings and by running a query that only returned a single row, only ran a single command, and didn't just dump out the results of the query to the caller.

Level 3

Code

@app.route('/login', methods=['POST'])
def login():
username = flask.request.form.get('username')
password = flask.request.form.get('password')

if not username:
return "Must provide username\n"

if not password:
return "Must provide password\n"

conn = sqlite3.connect(os.path.join(data_dir, 'users.db'))
cursor = conn.cursor()

query = """SELECT id, password_hash, salt FROM users
WHERE username = '{0}' LIMIT 1""".format(username)
cursor.execute(query)

res = cursor.fetchone()
if not res:
return "There's no such user {0}!\n".format(username)
user_id, password_hash, salt = res

calculated_hash = hashlib.sha256(password + salt)
if calculated_hash.hexdigest() != password_hash:
return "That's not the password for {0}!\n".format(username)

Issue

There's little input validation on username before it is used to constrcut a SQL query. There's no encoding applied when constructing the SQL query string which is used to, given a username, produce the hashed password and the associated salt. Accordingly one can make username a part of a SQL query command which ensures the original select returns nothing and provide a new SELECT via a UNION that returns some literal values for the hash and salt. For instance the following in blue is the query template and the red is the username injected SQL code:

SELECT id, password_hash, salt FROM users WHERE username = 'doesntexist' UNION SELECT id, ('5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8') AS password_hash, ('word') AS salt FROM users WHERE username = 'bob' LIMIT 1
In the above I've supplied my own salt and hash such that my salt (word) plus my password (pass) hashed produce the hash I provided above. Accordingly, by providing the above long and interesting looking username and password as 'pass' I can login as any user.

Notes

Code review red flag is again using strings to query the database. Although this level was made more difficult by using an API that returns only a single row and by using the execute method which only runs one command. I was forced to (as a SQL noob) learn the syntax of SELECT in order to figure out UNION and how to return my own literal values.

PermalinkCommentssecurity sql sql-injection technical web-security

Stripe Web Security CTF Summary

2012 Aug 30, 5:00

I was the 546th person to complete Stripe's web security CTF and again had a ton of fun applying my theoretical knowledge of web security issues to the (semi-)real world. As I went through the levels I thought about what red flags jumped out at me (or should have) that I could apply to future code reviews:

Level Issue Code Review Red Flags
0 Simple SQL injection No encoding when constructing SQL command strings. Constructing SQL command strings instead of SQL API
1 extract($_GET); No input validation.
2 Arbitrary PHP execution No input validation. Allow file uploads. File permissions modification.
3 Advanced SQL injection Constructing SQL command strings instead of SQL API.
4 HTML injection, XSS and CSRF No encoding when constructing HTML. No CSRF counter measures. Passwords stored in plain text. Password displayed on site.
5 Pingback server doesn't need to opt-in n/a - By design protocol issue.
6 Script injection and XSS No encoding while constructing script. Deny list (of dangerous characters). Passwords stored in plain text. Password displayed on site.
7 Length extension attack Custom crypto code. Constructing SQL command string instead of SQL API.
8 Side channel attack Password handling code. Timing attack mitigation too clever.

More about each level in the future.

PermalinkCommentscode-review coding csrf html internet programming script security sql stripe technical web xss

Newsroom: Miscellaneous: New Online Tool Gives Public Wider Access to Key U.S. Statistics

2012 Jul 28, 2:35

The U.S. Census Bureau today released a new online service that makes key demographic, socio-economic and housing statistics more accessible than ever before. The Census Bureau’s first-ever public Application Programming Interface (API) allows developers to design Web and mobile apps to explore or learn more about America’s changing population and economy.

PermalinkCommentstechnical api census statistics stats web restful rest

Everybody hates Firefox updates - Evil Brain Jono's Natural Log

2012 Jul 16, 1:59

Former FireFox developer on the switch to their continuous update cycle. 

Oh no, Chrome is doing such-and-such; we’d better do something equivalent or we’ll fall behind! We thought we needed a rapid update process like Chrome. We were jealous of their rapid update capability, which let them deploy improvements to users continuously. We had to “catch up” with Chrome’s updating capability.

Dealing with servicing on IE for years had led me to some of the same thoughts when I heard FireFox was switching to continuous updates.

PermalinkCommentsfirefox via:ericlaw web-browser technical web browser servicing update software
Older EntriesNewer Entries Creative Commons License Some rights reserved.